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0 Introduction and notations

In dynamical systems theory, iterating a map from a space to itself generates a
discrete-time dynamical system. One way to measure the complexity of such a
system is by using the notion of entropy. According to [39, p. 313], entropy in
dynamical systems is a notion that measures the rate of increase in dynamical
complexity as the system evolves with time.

The various existing forms of entropy in dynamical systems theory are
each suitable for use in a certain category. For instance, topological entropy
was introduced by Adler, Konheim, and McAndrew in [1] for dynamics in the
category of compact topological spaces with continuous morphisms. Similarly,
measure-theoretic entropy was introduced by Kolmogorov in [22] and later
improved by Sinai in [37], for dynamics in the category of probability spaces
with measure-preserving morphisms.

Our primary objective in this paper is to introduce and develop a new
form of entropy, algebraic entropy, that can be used as a tool in studying
homological properties of Noetherian local rings. To describe our main results
we need two definitions.

Definition 1 A homomorphism f : pR,mq Ñ pS, nq of Noetherian local rings
is said to be of finite length, if it is local and fpmqS is n-primary. In this case
we define the length of f , λpfq P r1,8q as λpfq :� `S

�
S{fpmqS

�
. We say f is

contracting, if for every x P m the sequence tfnpxqun¥1 converges to 0 in the
n-adic topology of S.

Remark 1 a) For local homomorphisms of Noetherian local rings, finite ñ
integral ñ finite length, and finite ñ quasi-finite ñ finite length. b) In [4,
Lemma 12.1.4] it was shown that a local endomorphism ϕ of a Noetherian local
ring pR,mq is contracting if and only if ϕepmq � m2, where e is the embedding
dimension of R.
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Definition 2 A local algebraic dynamical system is a discrete-time dynamical
system that is generated by iterating an endomorphism of finite length ϕ of a
Noetherian local ring R. If pR,ϕq and pS, ψq are two local algebraic dynamical
systems, a morphism f : pR,ϕq Ñ pS, ψq between these two dynamical systems
is a local homomorphism f : RÑ S such that ψ � f � f � ϕ.

In this paper we study the category of local algebraic dynamical systems. Our
main result in Section 1 is:

Theorem 1 Let pR,ϕq be a local algebraic dynamical system. Suppose R is of
dimension d and embedding dimension e. Let λ be as defined in Definition 1.
a) The sequence tplog λpϕnqq{nun¥1 converges to its infimum that is finite.

We define the algebraic entropy halgpϕ,Rq of ϕ as this limit.
b) If ϕ is in addition contracting, then e � halgpϕ,Rq ¥ d � log 2.
c) If R is of prime characteristic p ¡ 0, the algebraic entropy of the Frobenius

endomorphism is equal to d � log p.

Remark 2 a) Calling a quantity entropy requires justification. The analogies
between halgpϕ,Rq and topological entropy serve to justify our terminology.
We will show a number of such analogies in this paper. b) The definition of
algebraic entropy can be stated for graded self-maps of finite length of graded
rings over a field. Thus, algebraic entropy can also be defined for such maps.

We prove Theorem 1 in Section 1.3. We also provide lower and upper bounds
vh and wh for algebraic entropy. These bounds are inspired by a work of Samuel
in [34, p. 11]. The lower bound vh for algebraic entropy has also been studied
by Favre and Jonsson in a different context, in [12]. In [12, Theorem A] they
prove that if k is an arbitrary field and ϕ is a self-map of the ring kJX,Y K,
then vhpϕq is a quadratic algebraic integer.

In Sections 1.4 and 1.8 we develop the properties of algebraic entropy. A
remarkable feature of algebraic entropy is that it shares standard properties of
topological entropy. Indeed, writing hpϕq for entropy of a self-map ϕ of a space
X, algebraic and topological entropies both satisfy conditions of following type:

1) hpϕtq � t � hpϕq for all t P N, where ϕt � ϕ � ϕ � � � � � ϕ (t copies).
2) If Y � X is a closed ϕ-invariant subspace, then hpϕæY q ¤ hpϕq.
3) If f : X Ñ X 1 is an isomorphism, then hpϕq � hpf � ϕ � f�1q.
4) If X �

�
Yi, i � 1, . . . ,m, where the Yi are closed ϕ-invariant subspaces,

then hpϕq � max
 
hpϕæYi

q : 1 ¤ i ¤ m
(
.

These conditions were proved in [1] for topological entropy. We will establish
them for algebraic entropy in Section 1.4. Some other important results in
Sections 1.4 and 1.5 are invariance of algebraic entropy under flat morphisms of
finite length between two local algebraic dynamical systems, and the possibility
of computing algebraic entropy in mixed characteristic by reducing to equal
characteristic p ¡ 0.

When two or more forms of entropy can be used to study the complexity
of a system, often interesting relations emerge between them. These relations
have been studied intensively. For a survey of these studies and some open
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questions, the interested reader can consult [25]. In Section 1.6 we deal with
finite self-maps of local domains and explore the connection between degree
and algebraic entropy of these maps. In particular, for local Cohen-Macaulay
domains we establish a formula relating degree and algebraic entropy, that is
expected from topology.

In Section 1.8 we consider local algebraic dynamical systems pR,ϕq in
which ϕ is integral. Denoting the self-map induced by ϕ on SpecR by aϕ,
we show that when SpecR � V pkerϕq, aϕ permutes irreducible components
of SpecR. As a result, irreducible components of SpecR are invariant under
some iteration of ϕ.

In Section 2 we have two important results. First, using algebraic entropy
we extend numerical conditions of Kunz’ Regularity Criterion to arbitrary
characteristic. To be more precise, in Section 2.1 we prove:

Theorem 2 Let pR,m, ϕq be a local algebraic dynamical system of arbitrary
characteristic. Set d :� dimR. Let halgpϕ,Rq be the algebraic entropy of this
system. Define qpϕq :� expphalgpϕ,Rq{dq and consider the conditions:

a) R is regular.
b) ϕ : RÑ R is flat.
c) λpϕq � qpϕqd.
d) λpϕnq � qpϕqnd for some n P N.

Then a) ñ b) ñ c) ñ d). If in addition ϕ is contracting, d) ñ b) ñ a).
That is, when ϕ is contracting all above conditions are equivalent.

We should note that Avramov, Iyengar and Miller have proved the equivalence
of conditions a) and b) (and more) in [4] using different methods. In our proof,
we will use Herzog’s proof in [19, Satz 3.1] to prove the implication b) ñ a).
He originally wrote it for the Frobenius endomorphism. This part of our proof,
however, is not new and has also appeared in [9, Lemma 3].

In Section 2.2 we propose a characteristic-free definition for the Hilbert-
Kunz multiplicity in terms of algebraic entropy. From Theorem 2 it quickly
follows that the generalized Hilbert-Kunz multiplicity of a regular local ring
with respect to an arbitrary self-map of finite length is 1. This is a well-known
fact in the case of the Frobenius endomorphism.

Section 2.3 is inspired by a result of Fakhruddin on lifting polarized self-
maps of projective varieties over an infinite field to an ambient projective space.
Here we consider the analogous lifting problem for self-maps of finite length
of equicharacteristic complete Noetherian local rings, and prove a Structure
Theorem for them. As an improvement over Fakhruddin’s result, we do not
assume our fields to be infinite. Our second main result in Section 2 is:

Theorem 3 (Cohen-Fakhruddin) Suppose in a local algebraic dynamical
system pA, n, ϕq, A is a homomorphic image π : RÑ A of an equicharacteristic
complete regular local ring pR,mq. Then ϕ can be lifted to a self-map of finite
length ψ of R such that π � ψ � ϕ � π, i.e., π : pR,ψq Ñ pA,ϕq is a morphism
between two local algebraic dynamical systems.
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0.1 Notations and terminology

All rings in this paper are assumed to be Noetherian, commutative and with
identity element. By a self-map of a ring we mean an endomorphism of that
ring. For a self-map ϕ of a ring we will write ϕn for the n-fold composition of
ϕ with itself.

If M is an R-module of finite length, we will denote its length by `RpMq.
If M is a finitely generated R-module, we will denote its minimum number of
generators over R by µpMq. Given a ring homomorphism f : R Ñ S and an
S-module N , we will denote by f�N the R-module obtained by restriction of
scalars. That is, f�N is the R-module whose underlying abelian group is N
and whose R-module structure is given by r �x � fprqx, for r P R and x P f�N .
Similarly, we will denote by f� S the ring S considered as an R-algebra via f .
This notation is consistent with the notation used in [7].

The set of all minimal prime ideals of a ring R will be denoted by MinpRq.
If ϕ is a self-map of a ring R, we will denote the self-map induced by ϕ on
SpecR by aϕ.

1 Algebraic entropy

1.1 Preliminaries

In this section we gather some preliminary material that we will refer to
throughout the paper. We have omitted the majority of proofs, because they
are fairly elementary and the reader can either produce them easily, or find
them in the literature.

Proposition 1 Let f : pR,mq Ñ pS, nq be a homomorphism of finite length of
Noetherian local rings.

a) If p is a prime ideal of S such that f�1ppq � m, then p � n.
b) If q is an m-primary ideal of R, then fpqqS is n-primary.

Corollary 1 Let f : pR,mq Ñ pS, nq and g : pS, nq Ñ pT, pq be two local
homomorphisms of Noetherian local rings. If f and g are both of finite length,
then g � f is also of finite length.

Corollary 2 Let pR,ϕq be a a local algebraic dynamical system. Then ϕn is
of finite length for all n ¥ 1.

Proposition 2 Let f : R Ñ S be a local homomorphism of Noetherian local
rings with residue fields kR and kS and assume rf� kS : kRs   8. If N is
an S-module of finite length, then f�N is an R-module of finite length, and
`Rpf�Nq � rf� kS : kRs � `SpNq.

Corollary 3 Let pR,m, kq be a Noetherian local ring, and let ϕ be a finite
local self-map of R. Then µpϕn

� Rq � rϕ� k : ksn � λpϕnq.
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Proof By Nakayama’s Lemma µpϕn
� Rq � dimkpϕ

n
� R{mϕ

n
� Rq. Furthermore

dimkpϕ
n
� R{mϕ

n
� Rq � `Rpϕ

n
� R{mϕ

n
� Rq � `R pϕ�pR{ϕ

npmqRqq .

The result follows from Proposition 2 if we note rϕn
� k : ks � rϕ� k : ksn.

Definition 3 Let pR,ϕq be a local algebraic dynamical system. An ideal a of
R is called ϕ-invariant, if ϕpaqR � a.

Proposition 3 Let pR,mq, ϕ be a local algebraic dynamical system. Suppose
a is a ϕ-invariant ideal of R, and let ϕ be the local self-map induced by ϕ on
R{a. Then ϕ is of finite length, and for all n P N:

λpϕ nq � `R{a
� R{a

rϕnpmqR� as{a

�
� `R

� R

ϕnpmqR� a

�
.

Proposition 4 Let f : pR,mq Ñ pS, nq be a homomorphism of finite length of
Noetherian local rings. Let M be an R-module of finite length. Then

a) M bR S is of finite length as an S-module.
b) In general `SpM bR Sq ¤ λpfq � `RpMq.
c) If in addition f is flat, then `SpM bR Sq � λpfq � `RpMq.

Corollary 4 Suppose f : pR,mq Ñ pS, nq and g : pS, nq Ñ pT, pq are two local
homomorphisms of finite length of Noetherian local rings. Then:

a) In general λpgq ¤ λpg � fq ¤ λpgq � λpfq.
b) If in addition g is flat, then λpg � fq � λpgq � λpfq.

Proof a) By Corollary 1, λpg � fq   8. Since f is local, gpfpmqSqT � gpnqT .
Thus `T pT {gpnqT q ¤ `T pT {gpfpmqSqT q. This means λpgq ¤ λpg � fq. For the
second inequality use the canonical T -module isomorphism

T {g pfpmqSqT � pS{fpmqSq bS T

(see, e.g., [6, Chap. II, § 3.6, Coroll. 2 and 3, pp. 253-254]). By part b) of
Proposition 4

λpg � fq � `T ppS{fpmqSq bS T q ¤ λpgq � `SpS{fpmqSq (1)

� λpgq � λpfq.

b) If g is flat, then by part c) of Proposition 4 the inequality in Equation 1
turns into an equality, and the result follows immediately.

Corollary 5 Let pR,ϕq be a local algebraic dynamical system. Then

a) In general λpϕnq ¤ λpϕqn for all n P N.
b) If in addition ϕ is flat, then λpϕnq � λpϕqn for all n P N.

Proof By induction on n and using Corollary 4.
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1.2 Examples of self-maps of finite length

In this section we provide some examples of self-maps of finite length.

Example 1 If R is a local ring of positive prime characteristic p, then the
Frobenius endomorphism x ÞÑ xp is a contracting self-map of finite length.

Example 2 A power series ring R :� kJX1, . . . , XnK over a field k has lots
of self-maps of finite length. If elements f1, . . . , fn of R generate an ideal of
height n in R, then we obtain a self-map of finite length by setting Xi ÞÑ fi
for 1 ¤ i ¤ n. By Theorem 3, every self-map of finite length of a complete
equicharacteristic local ring is induced by a self-map described in this example.

Example 3 Let R :� kJX1, . . . , XnK be a power series ring over a field k, and
let ϕ be a self-map of finite length of R, e.g., as defined in Example 2. Let
z � 0 be an arbitrary element of the maximal ideal of R. Then the ideal
a generated by z, ϕpzq, ϕ2pzq, . . . (orbit of z under ϕ) is ϕ-invariant. Thus ϕ
induces a self-map of finite length ϕ on R{a. Moreover, if ϕ is contracting,
then so is ϕ. Macaulay 2 can be used to generate concrete examples of this
type. We mention a few such examples here. Let k be a field of characteristic
zero, and let R and a be as above.

a) n � 5, z � X1X2 �X3
3 �X5

4 �X2
5 . Define ϕ as Xi ÞÑ X2

i , for 1 ¤ i ¤ 4,
and X5 ÞÑ X4

5 . Then µpaq � 5 and dimR{a � 2.
b) n � 6, z � X2

1 �X3
2 �X5

3 �X7
4 �X11

5 �X13
6 . Define ϕ as Xi ÞÑ X2

i , for
1 ¤ i ¤ 6. Then µpaq � 5 and dimR{a � 2.

c) n � 7, z � X1X2X3�X
3
4�X

2
5X6�X

3
7 . Define ϕ as Xi ÞÑ X2

i , for 2 ¤ i ¤ 6
and X1 ÞÑ X2

7 , X7 ÞÑ X2
1 . Then µpaq � 5 and dimR{a � 3.

d) n � 8, z � X1X
5
4X

2
8 � X3X

4
5 � X2X

3
6 � X7. Define ϕ as Xi ÞÑ X2

i , for
3 ¤ i ¤ 8 and X1 ÞÑ X2

2 , X2 ÞÑ X2
1 . Then µpaq � 5 and dimR{a � 4.

Example 4 Let R :� kJX1, . . . , XnK be a power series ring over a field k, and
let a be an ideal of R with homogeneous generators that can be expressed in
the form monomial = monomial. Then the self-map of R given by Xi ÞÑ Xd

i

for some integer d ¡ 1, induces a contracting self-map of finite length on R{a.

1.3 Existence and estimates for algebraic entropy

In this section we prove Theorem 1. We also provide a lower bound vh and
an upper bound wh for algebraic entropy. The lower bound vh for algebraic
entropy has also been studied by Favre and Jonsson in a different context,
in [12]. In [12, Theorem A] they prove that if k is an arbitrary field and ϕ is
a self-map of the ring kJX,Y K, then vhpϕq is a quadratic algebraic integer.

We begin with an example.

Example 5 Let pR,mq be a Noetherian local ring of dimension zero, and let
ϕ be a local self-map of R. Then R is Artinian and 1 ¤ λpϕnq ¤ `pRq   8.
Apply logarithm, divide by n and let n approach infinity to get halgpϕ,Rq � 0.
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Thus, the algebraic entropy of any local self-map of a Noetherian local ring of
dimension zero is 0.

The lemma that follows is fairly well-known in dynamical systems.

Lemma 1 (Fekete) Let tanu and tbnu be sequences of real numbers that
satisfy the following conditions:

a) tan{nu is bounded above, an ¥ 0 and bn ¥ 0 for all n P N.
b) For all n,m P N, an�m ¥ an � am and bn�m ¤ bn � bm, respectively.

Then the sequences tan{nu and tbn{nu are both convergent. In fact

tan{nu Ñ sup
n
tan{nu and tbn{nu Ñ inf

n
tbn{nu.

Proof For a proof of tbn{nu Ñ infntbn{nu see, for example [38, Theorem 4.9].
We should note that since the terms bn of the sequence are non-negative,
infntbn{nu is a non negative real number. For a proof of tan{nu Ñ supntan{nu
let α :� supn tan{nu. By assumption (a), α is a non negative real number. For
every ε ¡ 0 there exists n0 such that an0

{n0 ¥ α� ε Given an integer n ¡ n0,
let us write n � n0q � r, with 0 ¤ r   n0. Then using (a) and (b)

an ¥ an0q � ar ¥ an0q ¥ q � an0 .

From these inequalities we deduce

log an
n

¥
qn0
n

�
log an0

n0
¥
qn0
n

� pα� εq �
n0

n0 � r{q
� pα� εq.

Thus, if we take n large enough so that n0{pn0� r{qq ¥ pα� 2εq{pα� εq then
we obtain pα� 2εq ¤ an{n ¤ α. The result follows.

The following definition is inspired by a definition in [34, p. 11].

Definition 4 Let f : pR,mq Ñ pS, nq be a local homomorphism of finite
length of Noetherian local rings. We define

vpfq � maxtk P N | fpmqS � nku,

wpfq � mintk P N | nk � fpmqSu.

Remark 3 It quickly follows from this definition that nwpfq � fpmqS � nvpfq.
Thus, we always have vpfq ¤ wpfq.

Lemma 2 Let f : pR,mq Ñ pS, nq and g : pS, nq Ñ pT, pq be local homomor-
phisms of finite length of Noetherian local rings. Then

vpg � fq ¥ vpgq � vpfq,

wpg � fq ¤ wpgq � wpfq.
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Proof First note that for an ideal a of S, gpanqT � rgpaqT sn for all n P N.
(see [2, Exercise 1.18, p. 10]). We can write

rpg � fqpmqsT � gpfpmqSqT � gpnvpfqqT

� rgpnqT s
vpfq

R � pvpgqvpfq.

Thus, by definition of vpg � fq we must have vpg � fq ¥ vpgq � vpfq. Similarly

pwpgqwpfq � rgpnqT s
wpfq

� gpnwpfqqT

� gpfpmqSqT � rpg � fqpmqsT.

Again, by definition of wpg � fq we must have wpg � fq ¤ wpgq � wpfq.

Corollary 6 Let pR,m, ϕq be a local algebraic dynamical system. Then for all
m,n P N the following inequalities hold:

vpϕn�mq ¥ vpϕnq � vpϕmq,

wpϕn�mq ¤ wpϕnq � wpϕmq.

Proof Apply Lemma 2 taking ϕn as g and ϕm as f .

Proposition 5 Let pR,m, ϕq be a local algebraic dynamical system. Then the
sequences tplog vpϕnqq{nu and tplogwpϕnqq{nu converge to their supremum
and infimum, respectively. We will denote these limits by vhpϕq and whpϕq.

Proof We will apply Lemma 1, taking tlog vpϕnqu and tlogwpϕnqu as tanu and
tbnu in the lemma, respectively. We verify that the conditions of the lemma
are satisfied. By Corollary 6 and Remark 3, for every n P N

1 ¤ rvpϕqsn ¤ vpϕnq ¤ wpϕnq ¤ rwpϕqsn.

Thus, condition a) of Lemma 1 is satisfied. Moreover, Corollary 6 shows that
condition b) of Lemma 1 is also satisfied. Hence the sequences tlogpvpϕnqq{nu
and tlogpwpϕnqq{nu converge to their supremum and infimum, respectively.

Theorem 4 Let pR,m, ϕq be a local algebraic dynamical system, and let d :�
dimR. Then

d � vhpϕq ¤ halgpϕ,Rq ¤ d � whpϕq.

Proof By Definition 4, mwpϕ
nq � ϕnpmqR � mvpϕ

nq. Thus

`RpR{m
vpϕnqq ¤ λpϕnq ¤ `RpR{m

wpϕnqq.

We consider two cases: vpϕnq Ñ 8 and vpϕnq Û 8. In the first case by
Remark 3 wpϕnq Ñ 8, as well, and for large n, the lengths `RpR{m

vpϕnqq and
`RpR{m

wpϕnqq are polynomials in vpϕnq and wpϕnq, respectively, of precise
degree d, with highest degree terms epmqpvpϕnqqd{d! and epmqpwpϕnqqd{d!.
Thus, for large n we obtain

epmq

d!
pvpϕnqq

d
¤ λpϕnq ¤

epmq

d!
pwpϕnqq

d
.
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Applying logarithm, dividing by n and letting n approach infinity, we see that

0 ¤ d � vhpϕq ¤ halgpϕ,Rq ¤ d � whpϕq   8.

In the second case, when vpϕnq Û 8, the sequence tvpϕnqu must be bounded.
Hence, there is a constant c such that 1 ¤ vpϕnq ¤ c. Applying logarithm,
dividing by n and letting n approach infinity, we see that vhpϕq � 0. Now, if
wpϕnq Ñ 8, then starting with the inequality

1 ¤ λpϕnq ¤ `RpR{m
wpϕnqq

and repeating the same argument as before, we arrive at the desired inequality

vhpϕq � 0 ¤ halgpϕq ¤ d � whpϕq.

Finally if wpϕnq Û 8, then the sequence twpϕnqu is also bounded and there
exists a constant c1 such that 1 ¤ wpϕnq ¤ c1. After applying logarithm,
dividing by n and letting n approach infinity, we see that whpϕq � 0. Since
vhpϕq � 0 as well, the proof will be completed by showing halgpϕ,Rq � 0. This
follows from the inequality

1 ¤ λpϕnq ¤ `RpR{m
wpϕnqq ¤ `RpR{m

c1q

by applying logarithm, dividing by n and letting n approach infinity.

Proof (of Theorem 1) a) We apply Lemma 1, taking bn � log λpϕnq. We verify
the conditions of this lemma. By Corollary 4,

log λpϕm�nq ¤ log λpϕmq � log λpϕnq.

The condition log λpϕnq ¥ 0 is clear. By Lemma 1 the sequence tplog λpϕnqq{nu
converges to its infimum, which is a real number.

b) If e � 0 then there is nothing to prove. Assume e ¡ 0. Since ϕ is
contracting, by Remark 1, ϕepmqR � m2. Hence

ϕnepmqR � m2n .

By definition of vp � q in Definition 4, vpϕneq ¥ 2n. Thus

plog vpϕneqq{pneq ¥ pn log 2q{ne.

Letting n approach infinity we obtain vhpϕq ¥ log 2{e. Now using Theorem 4,

halgpϕ,Rq ¥ d � vhpϕq ¥ pd � log 2q{e.

c) If R is of characteristic p and ϕ is its Frobenius endomorphism, then
by [23, Proposition 3.2]

pnd ¤ λpϕnq ¤ min
ty1,...,ydu

r`R pR{py1, . . . , ydqRqs � p
nd,

where ty1, . . . , ydu runs over all systems of parameters of R. Apply logarithm,
divide by n and let n approach infinity. We see halgpϕ,Rq � d � log p.

The following corollary can be thought of as the converse of Example 5.

Corollary 7 Let pR,m, ϕq be a local algebraic dynamical system and suppose
ϕ is contracting. If halgpϕ,Rq � 0, then dimR � 0.
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1.4 Properties of algebraic entropy

We establish a number of important properties of algebraic entropy in this
section. As mentioned in the introduction, some of these properties are in
common between algebraic and topological entropies.

Proposition 6 Let pR,ϕq be a local algebraic dynamical system. Then for all
t P N: halgpϕ

t, Rq � t � halgpϕ,Rq.

Proof By definition of algebraic entropy

halgpϕ
t, Rq � lim

nÑ8
p1{nq � log λpϕtnq

� t � lim
nÑ8

p1{ptnqq � log λpϕtnq

� t � halgpϕ,Rq.

Proposition 7 Let f : pR,m, ϕq Ñ pS, n, ψq be a morphism between two local
algebraic dynamical systems. Assume that f is of finite length. Then

a) In general halgpψ, Sq ¤ halgpϕ,Rq.
b) If in addition f is flat, then halgpψ, Sq � halgpϕ,Rq.

Proof a) By Corollary 2 and our assumptions, ϕn and ψn are also of finite
length. Noting that ψn � f � f � ϕn for all n P N and using Corollary 4

λpψnq ¤ λpψn � fq � λpf � ϕnq ¤ λpfq � λpϕnq. (2)

We obtain the result by applying logarithm to either side of this inequality,
then dividing by n and taking limits as n approaches infinity.
b) If f is flat, then using Corollary 4 we compute

λpϕnq � λpfq � λpϕnq{λpfq � λpf � ϕnq{λpfq

� λpψn � fq{λpfq ¤ λpψnq � λpfq{λpfq � λpψnq.

Thus, using Inequality 2, λpϕnq ¤ λpψnq ¤ λpfq � λpϕnq. The result follows
quickly by taking logarithms, dividing by n, and taking limits as n approaches
infinity.

Corollary 8 Let pR,m, ϕq be a local algebraic dynamical system. If pR is the

m-adic completion of R then halgpϕ,Rq � halgppϕ, pRq.
Proof We have a flat morphism of finite length p� : pR,ϕq Ñ p pR, pϕq.
Corollary 9 Consider homomorphisms of finite length f : pR,mq Ñ pS, nq
and g : pS, nq Ñ pR,mq of Noetherian local rings. Then

halgpg � f,Rq � halgpf � g, Sq.
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Proof f : pR, g � fq Ñ pS, f � gq and g : pS, f � gq Ñ pR, g � fq are morphisms
between local algebraic dynamical systems. By Proposition 7

halgpf � g, Sq ¤ halgpg � f,Rq and halgpg � f,Rq ¤ halgpf � g, Sq.

The result follows immediately.

Corollary 10 (Invariance) Let pR,mq and pS, nq be Noetherian local rings.
Suppose f : R Ñ S is an isomorphism, and let ϕ be a self-map of of finite
length of R . Then halgpf � ϕ � f

�1, Sq � halgpϕ,Rq.

Proof Apply Corollary 9 to homomorphisms f � ϕ : RÑ S and f�1 : S Ñ R.

Corollary 11 Let pR,ϕq be a local algebraic dynamical system and let a be a
ϕ-invariant ideal of R. Write ϕ for both self-maps induced by ϕ on R{a and
R{ϕpaqR. Then halgpϕ,R{aq � halgpϕ,R{ϕpaqRq.

Proof Let ϕ1 : R{a Ñ R{ϕpaqR and id : R{ϕpaqR Ñ R{a be homomorphisms
induced by ϕ and identity map of R. Apply Corollary 9 to ϕ1 and id.

We will need the following two lemmas in the proof of Proposition 8.

Lemma 3 Let tanu and tbnu be two sequences of real numbers not less than
1 such that limnÑ8plog anq{n � α and limnÑ8plog bnq{n � β exist. Then

lim
nÑ8

logpan � bnq{n � maxtα, βu.

Proof See [1, p. 312].

Lemma 4 Let pR,m, ϕq be a local algebraic dynamical system. Let a1, . . . , as
be a collection of not necessarily distinct ϕ-invariant ideals of R. Let ϕ and
ϕi be the self-maps induced by ϕ on R{

±
iai and R{ai, respectively. Then

halgpϕ,R{
±
iaiq � maxthalgpϕi, R{aiq | 1 ¤ i ¤ su.

Proof We proceed by induction on s, the number of ideals, counting possible
repetitions. There is nothing to prove if s � 1, so suppose s � 2. Without loss
of generality we may assume

halgpϕ1, R{a1q � maxthalgpϕ1, R{a1q, halgpϕ2, R{a2qu.

Since a1a2 � a1, we have a1Xpa1a2 � ϕnpmqRq � a1a2�pa1Xϕ
npmqRq. Thus,

if we apply the Second Isomorphism Theorem to make the identification

a1 � ϕnpmqR

a1a2 � ϕnpmqR
�

a1
a1a2 � pa1 X ϕnpmqRq

,

then we can write an exact sequence

0 Ñ
a1

a1a2 � pa1 X ϕnpmqRq
Ñ

R

a1a2 � ϕnpmqR
Ñ

R

a1 � ϕnpmqR
Ñ 0.
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From this exact sequence

`RpR{ra1 � ϕnpmqRsq ¤ `RpR{ra1a2 � ϕnpmqRsq

� `Rpa1{ra1a2 � pa1 X ϕnpmqRqsq (3)

� `RpR{ra1 � ϕnpmqRsq.

Since in the quotient ring R{pa1a2q the ideal a2{pa1a2q annihilates a1{pa1a2q,
we can consider a1{pa1a2q as a finite rpR{pa1a2qq { pa2{pa1a2qqs-module and as
such, there is a surjection�

R{pa1a2q

a2{pa1a2q


t
Ñ

a1
pa1a2q

Ñ 0.

If we tensor this surjection over the quotient ring R{pa1a2q with

R{pa1a2q

ra1a2 � ϕnpmqRs{pa1a2q

and then compare the lengths in the resulting surjection, by Proposition 3,
Proposition 2 and the Third Isomorphism Theorem, we can quickly see

`Rpa1{ra1a2 � a1 � ϕ
npmqRsq ¤ `Rpa1{ra

2
1a2 � a1 � ϕ

npmqRsq

¤ t � `RpR{ra2 � ϕnpmqRsq.

Since `Rpa1{ra1a2�pa1Xϕ
npmqRqsq ¤ `Rpa1{ra1a2�a1�ϕ

npmqRsq, the previous
inequality together with Inequality 3 yield

`RpR{ra1 � ϕnpmqRsq ¤ `RpR{ra1a2 � ϕnpmqRsq

¤ `RpR{ra1 � ϕnpmqRsq � t � `RpR{ra2 � ϕnpmqRsq.

Apply logarithm, divide by n, and let n approach infinity. By Lemma 3 and
Proposition 3

halgpϕ1, R{a1q ¤ halgpϕ,R{a1a2q ¤ maxthalgpϕ1, R{a1q, halgpϕ2, R{a2qu.

This establishes the result for s � 2. Now we assume the statement holds for
all s with 2 ¤ s ¤ n0, and we show it also holds for s � n0 � 1. To this end,
we can write the product

±n0�1
i�1 ai of our ideals in the form p

±n0

i�1 aiqpan0�1q
and then apply the case s � 2 followed by the case s � n0 to establish the
result for s � n0 � 1, using the induction hypothesis.

Our next result shows that if all minimal prime ideals of a Noetherian local ring
R are invariant under a self-map of the ring, then the algebraic entropy is equal
to the maximum algebraic entropy of the self-maps induced on irreducible
components of SpecR.

Proposition 8 Let pR,m, ϕq be a local algebraic dynamical system. Suppose
all minimal prime ideal of R are ϕ-invariant and for each pi P MinpRq, let ϕi
be the self-map induced by ϕ on R{pi. Then

halgpϕ,Rq � maxthalgpϕi, R{piq | pi P MinpRqu. (4)
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Proof Let MinpRq � tp1, . . . , psu and let a �
±
i pi. Then a is contained in

the nilradical of R, hence aN � p0q for some N . Therefore it is clear that
halgpϕ,Rq � halgpϕ,R{a

N q. But by Lemma 4

halgpϕ,R{a
N q � maxthalgpϕi, R{piq | pi P MinpRqu.

Remark 4 As we shall see in Proposition 13, under certain conditions, when
a self-map is integral, minimal prime ideals are invariant under some power of
the self-map. As a result, we can apply Proposition 8 to a power of our self-
map in this case. We will obtain formulas similar to Formula 4 in Corollary 14
and Proposition 15, below.

1.5 Reduction to equal characteristic

In this section we show that any self-map of a local ring of mixed characteristic
naturally induces a self-map of another local ring of equal characteristic p ¡ 0
with the same algebraic entropy. Using this result, computing algebraic entropy
in mixed characteristic can be reduced to the case of equal characteristic p ¡ 0.

For a given local algebraic dynamical system pR,m, ϕq, we define

S :�
�8
n�1 ϕ

npRq and n :�
�8
n�1 ϕ

npmq. (5)

Lemma 5 Let pR,m, ϕq be a local algebraic dynamical system. Let S and n
be as defined in Equation 5, and let a be the ideal generated by n in R. Then

a) S is a local subring of R with maximal ideal n.
b) a is a ϕ-invariant ideal of R.
c) If ϕ is in addition injective, then ϕpaqR � a.

Proof a) It is immediately clear that S is a subring of R and that n is an ideal
of S. To show that n is the (only) maximal ideal of S, consider an element
s P Szn. Since s R n, there is an n0 such that s R ϕn0pmq. In fact, since for
n ¥ n0, ϕnpmq � ϕn0pmq, we see that s R ϕnpmq for all n ¥ n0. Hence, there
are units yn P Rzm such that s � ϕnpynq for all n ¥ n0. Since s is clearly a
unit in R, it has a unique multiplicative inverse s�1 in R. From uniqueness of
multiplicative inverse it immediately follows that we must have s�1 � ϕnpy�1

n q,
for all n ¥ n0. Hence, s�1 P S, that is, s is also a unit in S.
b) Note that by its definition, a has a set of generators x1, . . . , xg P n. So
ϕpaqR can be generated by ϕpx1q, . . . , ϕpxgq and it suffices to show that each
ϕpxiq is in a. Since xi P n, there is a sequence of element yi,n P m such
that xi � ϕpyi,1q � . . . � ϕnpyi,nq � . . . . Thus, ϕpxiq � ϕ2pyi,1q � . . . �
ϕn�1pyi,nq � . . ., showing that ϕpxiq P n � a.
c) Now suppose ϕ is injective. To show ϕpaqR � a it suffices to show that each
xi is in ϕpaq. Since xi P n, there is a sequence of element yi,n P m such that
xi � ϕpyi,1q � . . . � ϕnpyi,nq � . . .. Since xi � ϕpyi,1q, we will be done by
showing that yi,1 P n. By injectivity of ϕ, yi,1 � ϕpyi,2q � . . . � ϕn�1pyi,nq �
. . . , which means yi,1 P n.
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Remark 5 Let pR,m, ϕq be a local algebraic dynamical system and let n be as
defined in Equation 5. If n � p0q, then by Lemma 5 R contains a field and
is of equal characteristic. As noted in [3, Remark 5.9, p. 10], this occurs, for
example, if ϕ is a contracting self-map.

Proposition 9 Let pR,m, ϕq be a local algebraic dynamical system. Let a be
the ideal of R defined in Lemma 5, and let ϕ be the local self-map induced by
ϕ on R{a. Then

a) halgpϕ,R{aq � halgpϕ,Rq.
b) If R is of mixed characteristic, then R{a is of equal characteristic p ¡ 0.

Proof a) Note that ϕnpmqR � a for all n ¥ 1. Hence, ϕnpmqR� a � ϕnpmqR.
By Proposition 3, λpϕ nq � λpϕnq. Our claim quickly follows.
b) With reference to Lemma 5, the image of the subring S of R in R{a is a
field, because it’s maximal ideal n is contained in a and is mapped to 0. Hence
R{a contains a field and must be a local ring of equal characteristic p ¡ 0, as
its residue field is of characteristic p ¡ 0.

1.6 Algebraic entropy and degree

The analogy between algebraic and topological entropies also extends to their
relation to the degree of the self-map. Misiurewicz and Przytycki showed
in [28], that if f is a C1 self-map of a smooth compact orientable manifold M ,
then htoppf,Mq ¥ log |degpfq|. For a holomorphic self-map f of CPn, Gromov
established the formula htoppf,CPnq � log |degpfq| in [15]. Here degpfq is the
topological degree of f .

In this section we obtain similar formulas relating algebraic entropy to
degree of finite self-maps of local domains. For local Cohen-Macaulay domains
we prove an analog of Gromov’s formula. But first we shall make it clear what
we mean by degree.

Definition 5 Let R be a Noetherian local domain, and let ϕ be a finite self-
map of R. Then by degree of ϕ, degpϕq, we mean the rank of the R-module
ϕ�R. Note that the equality degpϕnq � rdegpϕqsn holds for all n P N.

Proposition 10 Let pR,ϕq be a local algebraic dynamical system, where ϕ is
finite. If we denote the minimum number of generators of the R-module ϕn

� R
by µpϕn

� Rq, then the sequence tplogµpϕn
� Rqq{nu converges to its infimum. We

will denote this limit by by µ8.

Proof We will apply Lemma 1, taking bn � logµpϕn
� Rq. To verify conditions

of Lemma 1, first note that the inequality bn�m ¤ bn � bm holds because if
tx1, . . . , xtu and ty1, . . . , ysu are sets of generators of ϕm

� R and ϕn
� R over R,

respectively, then tϕmpyjqxi | 1 ¤ i ¤ t, 1 ¤ j ¤ su is a set of generators of
ϕn�m
� R over R. Therefore

µpϕn�m
� Rq ¤ µpϕn

� Rq � µpϕ
m
� Rq.
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On the other hand, it is clear that bn � logµpϕn
� Rq ¥ 0. Hence, by Lemma 1

the sequence tplogµpϕn
� Rqq{nu converges to its infimum.

Corollary 12 Let pR,m, ϕq be a local algebraic dynamical system, where ϕ is
finite, and let k be the residue field of R. Then µ8 � logrϕ� k : ks�halgpϕ,Rq,
where µ8 is as defined in Proposition 10.

Proof By Corollary 3 µpϕn
� Rq � rϕ� k : ksn � λpϕnq. The result follows by

applying logarithm to both sides of this equation, then dividing by n and
letting n approach infinity.

Lemma 6 Let pR,m, ϕq be a local algebraic dynamical system, where R is a
domain and ϕ is finite, and let k be the residue field of R. If q is an m-primary
ideal of R and n P N, then

epϕnpqqRq �
epqq pdegpϕqq

n

rϕ� k : ksn
. (6)

Proof Let d � dimR. By definition of multiplicity

epq, ϕn
� Rq � lim

mÑ8

d!

md
� `R

� ϕn
� R

qm � ϕn
� R

	
� lim

mÑ8

d!

md
� `R

�
ϕn
�

� R

ϕnpqmqR

�	
� lim

mÑ8

d!

md
� `R

�
ϕn
�

� R

pϕnpqqRqm
�	

(for the last equality, see, e.g., [2, Exercise 1.18, p. 10]). Now by Proposition 2

lim
mÑ8

d!

md
� `R

�
ϕn
�

� R

pϕnpqqRqm
�	

� lim
mÑ8

d!

md
� rϕn

� k : ks � `R

� R

pϕnpqqRqm

	
� rϕ� k : ksn � lim

mÑ8

d!

md
� `R

� R

pϕnpqqRqm

	
� rϕ� k : ksn � epϕnpqqRq.

So epq, ϕn
� Rq � rϕ� k : ksn � epϕnpqqRq. On the other hand

epq, ϕn
� Rq � epqq � degpϕnq,

(see [27, Theorem 14.8]) and Formula 6 quickly follows.

Remark 6 Formula 6 can also be deduced from [40, Corollary 1, Chapter VIII].

Corollary 13 Let pR,m, ϕq be a local algebraic dynamical system, where R is
a domain and ϕ is finite, and let k be the residue field of R. Set d :� dimR and
define qpϕq :� expphalgpϕ,Rq{dq. Let χpx1, . . . , xd;Rq be the Euler-Poincaré
characteristic of the Koszul complex on elements x1, . . . , xd. The following
conditions are equivalent:

a) log degpϕq � logrϕ� k : ks � halgpϕ,Rq
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b) For any system of parameters tx1, . . . , xdu of R and for any n P N

χpϕnpx1q, . . . , ϕ
npxdq;Rq � qpϕqnd � χpx1, . . . , xd;Rq. (7)

c) Equation 7 holds for some system of parameters of R and some n P N.

Proof By [36, Chap. IV, Theorem 1] for any parameter ideal q of R generated
by a system of parameters ty1, . . . , ydu we have epqq � χpy1, . . . , yd;Rq. By
Corollary 2 and Proposition 1, tϕnpx1q, . . . , ϕ

npxdqu is a system of parameters
of R for all n P N. The result quickly follows from Proposition 6 and Equation 6
in Lemma 6.

Example 6 Let pR,mq be a Noetherian local domain of prime characteristic p,
and let ϕ be the Frobenius endomorphism of R. Then by [24, Proposition 2.3]
condition a) of Corollary 13 holds.

Proposition 11 Let pR,m, ϕq be a local algebraic dynamical system, where R
is a domain and ϕ is finite, and let k be the residue field of R. Then

a) log degpϕq ¤ logrϕ� k : ks � halgpϕ,Rq.
b) If in addition R is Cohen-Macaulay, log degpϕq � logrϕ� k : ks�halgpϕ,Rq.

Proof a) Consider a minimal free presentation of the R-module ϕn
� R

Rs Ñ Rt Ñ ϕn
� RÑ 0.

If we localize this presentation at p0q we see rankϕn
� R ¤ t � µpϕn

� Rq. On the
other hand by Corollary 3, µpϕn

� Rq � rϕ� k : ksn � λpϕnq. Since by definition
of degree rankϕn

� R � degpϕnq � pdegpϕqqn, we obtain

pdegpϕqqn ¤ rϕ� k : ksn � λpϕnq.

The desired inequality is obtained by applying logarithm, dividing by n and
letting n approach infinity.
b) Let q be an arbitrary parameter ideal of R. Then

λpϕnq � `R pR{ϕ
npmqRq ¤ `R pR{ϕ

npqqRq .

If R is Cohen-Macaulay, then `R pR{ϕ
npqqRq � epϕnpqqRq (see, for instance,

[27, Theorem 17.11]). Thus

λpϕnq ¤ epϕnpqqRq �
epqqpdegpϕqqn

rϕ� k : ksn
,

where the last equality holds by Lemma 6. Applying logarithm, dividing by n,
and letting n approach infinity we obtain

halgpϕ,Rq ¤ log degpϕq � logrϕ� k : ks.

This inequality together with the inequality in part a) yield the result.
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1.7 A note on projective varieties

In this section we will prove a formula similar to the formula in part b) of
Proposition 11, for finite polarized self-maps of projective varieties over a field.
We first establish a lemma.

Lemma 7 Let pX,OXq be a separated Noetherian integral scheme, and let
α be an additive non-negative function from coherent OX-modules to r0,8q.
Then α is a constant multiple of generic rank.

Proof (due to Angelo Vistoli) By Noetherian induction we can assume that
for every proper integral subscheme Y of X, the restriction of α to coherent
OY -modules is given by a constant multiple cY of generic rank at Y . Let F
be a coherent sheaf of OX -modules supported on a proper integral subscheme
Y of X and let I be the ideal sheaf of Y in X. Since X is Noetherian, there
is a (smallest) integer n such that InF � 0. Thus, F has a filtration

F � IF � I2F � . . . � InF � p0q.

So by additivity of α, αpFq �
°n
i�1 αpIi�1F{IiFq. The sheaves Ii�1F{IiF

are coherent sheaves of OY -modules. Thus from the above sum we see that
αpFq is equal to cY times the length of the stalk of F at the generic point of Y .
On the other hand, the length of the stalk of the sheaf OX{In at the generic
point of Y is unbounded, as n Ñ 8. However, by additivity and positivity
of α, the value of αpOX{Inq is bounded by αpOXq. Hence cY � 0 and α is
zero on all coherent OX -modules supported on a proper integral subscheme
of X. Next, we show that α is zero on all coherent torsion sheaves. Let F be
a coherent torsion sheaf of OX -modules. By [18, Corollary 3.2.8, p. 43] any
coherent sheaf F has a filtration

F � F0 � F1 � F2 � . . . � Fn � p0q

consisting of coherent OX -modules, such that the quotients Fi{Fi�1 are either
zero, or AsspFi{Fi�1q is exactly a single point and AsspFi{Fi�1q � SupppFq.
Again by additivity of α, αpFq �

°n�1
i�0 αpFi{Fi�1q. If AsspFi{Fi�1q is exactly

a single point, then SupppFi{Fi�1q is an irreducible proper (closed) subset of
X (see [18, Corollary 3.1.4, p. 37]). Thus, from the previous part, αpFq � 0.
In particular, if F Ñ G is a generic isomorphism of coherent sheaves, then
αpFq � αpGq.

Now suppose F is a coherent torsion-free sheaf on X with generic rank r.
Then there is an open affine neighborhood U of the generic point of X with a
monomorphism F |U ãÑ O` r

U (see [31, Chap. II, Lemma 1.1.8]). We can extend
F |U to a coherent sheaf F 1 on X with a monomorphism η : F 1

ãÑ O` r
X in

such a way that F 1|U � F |U (see [13, Chap. VI, Lemma 3.5, p. 168]). Since η
is a generic isomorphism, αpF 1q � αpO` r

X q � r � αpOXq. On the other hand,
there is a coherent sheaf G on X with homomorphisms G Ñ F and G Ñ F 1

that are generic isomorphisms (see [13, Chap. VI, Lemma 3.7, p. 169]). The
result follows.
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A proof of the next theorem when X is a Kähler manifold appeared in [41,
Lemma 1.1.1]. A. Chambert-Loir has also given a proof of this theorem. Here
we present a proof using Lemma 7.

Proposition 12 Let X be an integral projective variety of dimension d over
a field k and let ϕ : X Ñ X be a finite morphism. Assume that pX,ϕq is
polarized by an ample line bundle L on X, that is, for some integer q ¥ 1,
ϕ�pLq � Lb q. Then degpϕq � qd.

Proof To simplify notations, for any coherent sheaf of OX -modules F and for
n P Z we set Fpnq :� F bOX

Lbn. By Projection Formula and using the
assumption that L is polarized,

pϕ�OXqpnq � ϕ�pOX bOX
ϕ�pLbnqq � ϕ�pLbnqq � ϕ�pOXpnqqq, for n P Z.

Since ϕ is a finite morphism, it is affine. Hence (see [17, Corollary 1.3.3, p. 88])

HipX,ϕ�pOXpnqqqq � HipX,OXpnqqq, for i ¥ 0.

Writing χkp � q for the Euler-Poincaré characteristic, we obtain

χk ppϕ�OXqpnqq � χkpOXpnqqq. (8)

Replacing L with Lbm for large m if necessary, we may assume, without loss
of generality, that L is very ample ([16, Proposition 4.5.10, p. 86]). Then for
any coherent sheaf of OX -modules F and any n P Z, the value of χkpFpnqq
is equal to the value of the Hilbert polynomial of F at n, and the coefficient
of the leading term of the Hilbert polynomial of F is non negative (see [17,
Theorem 2.5.3, p. 109]). Since χkp � q is an additive function on the category
of coherent OX -modules, we obtain an additive non negative function

αpFq :� lim
nÑ8

χkpFpnqq
nd

from the category of coherent OX -modules to rational numbers. Note that if
dim SupppFq   d then αpFq � 0 (see [18, Proposition 5.3.1, p. 92]). From
Equation 8 we quickly obtain αpϕ�OXq � αpOXq � q

d. On the other hand,
using Lemma 7

αpϕ�OXq � αpOXq � degpϕq.

Hence degpϕq � qd.

1.8 The case of integral self-maps

In this section we study local algebraic dynamical systems pR,ϕq generated
by integral self-maps. We show that when SpecR � V pkerϕq, aϕ permutes
the irreducible components of SpecR. Thus, there is a smallest number p such
that all irreducible components of SpecR are ϕp-invariant. We give formulas
relating algebraic entropy of ϕp to algebraic entropies of its restrictions to
irreducible components of SpecR.
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Proposition 13 Let pR,ϕq be a local algebraic dynamical system. Assume
that ϕ is integral and SpecR � V pkerϕq. Then the restriction of aϕ to MinpRq
is a permutation of MinpRq.

Proof Let ϕ̃ : pR{ kerϕq ãÑ R be the map induced by ϕ. We have a commuting
diagram

R R

R{ kerϕ

ϕ

π
ϕ̃

Let q P MinpRq. Then by assumption kerϕ � q, hence πpqq P MinpR{ kerϕq.
Since ϕ is integral, there is an element p P SpecR such that πpqq � ϕ̃�1ppq.
Thus, q � ϕ�1ppq, or equivalently q � aϕppq. We claim that p P MinpRq. If p
were not a minimal prime ideal of R, then it would contain a minimal prime
ideal p1. In that case πpqq � ϕ̃�1ppq � ϕ̃�1pp1q and the minimality of πpqq
would force ϕ̃�1pp1q � πpqq. But since ϕ is integral, there can be no inclusion
between prime ideals of R lying over πpqq [27, Theorem 9.3]. This establishes
our claim that p P MinpRq. Thus, we see that

MinpRq � aϕ pMinpRqq .

Now, since MinpRq is a finite set, we must have MinpRq � aϕ pMinpRqq. Hence
the restriction of aϕ to MinpRq is a bijective map of the set MinpRq to itself.

Corollary 14 Let pR,ϕq be a local algebraic dynamical system. Assume that
ϕ is integral and SpecR � V pkerϕq. Let p be the smallest integer such that
aϕp is the identity map on MinpRq. For pi P MinpRq let ϕi be the self-map
induced by ϕp on R{pi. Then

halgpϕ,Rq �
1

p
�maxthalgpϕi, R{piq | pi P MinpRqu.

Proof By Proposition 8, halgpϕ
p, Rq � maxthalgpϕi, R{piq | pi P MinpRqu. By

Proposition 6, halgpϕ
p, Rq � p � halgpϕ,Rq and the result follows.

Corollary 15 Let pR,ϕq be a local algebraic dynamical system. Suppose ϕ is
integral and SpecR � V pkerϕq. Then an element x P R belongs to a minimal
prime ideal of R, if and only if ϕpxq belongs to a minimal prime ideal of R.

Proof Let x be an element of R. If ϕpxq P p for some p P MinpRq, then
x P ϕ�1ppq. By Proposition 13, ϕ�1ppq P MinpRq. Conversely, suppose x P q
for some q P MinpRq. Then by Proposition 13 there is a p P MinpRq such that
q � ϕ�1ppq. Hence ϕpxq P p.

Corollary 16 Let pR,ϕq be a local algebraic dynamical system. Assume that
ϕ is integral and SpecR � V pkerϕq. If p R MinpRq, then ϕ�1ppq R MinpRq.
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Proof This follows quickly from the proof of Proposition 13.

Remark 7 If pR,ϕq is a local algebraic dynamical system, then for every n P N,
ϕ pkerϕnq � kerϕn�1 � kerϕn. Hence ϕ induces a local self-map of R{ kerϕn.

Proposition 14 Let pR,m, ϕq be a local algebraic dynamical system. Let ϕn
be the local self-map induced by ϕ on R{ kerϕn, n P N. Then

a) halgpϕ,Rq � halgpϕn, R{ kerϕnq.
b) For large n, ϕn : R{ kerϕn Ñ R{ kerϕn is injective.
c) If ϕ is integral, then so is ϕn (see [7, Chapter V, Proposition 2, p. 305]).

Proof a) Apply Corollary 11 to the self-map ϕn of R, taking kerϕn as the
ideal a in that corollary. Since ϕnpkerϕnqR � p0q

halgpϕ
n
n, R{ kerϕnq � halgpϕ

n
n, R{ϕ

npkerϕnqRq � halgpϕ
n, Rq.

The result follows from Proposition 6.
b) R is Noetherian, so the ascending chain kerϕ � kerϕ2 � kerϕ3 � . . . is
stationary. Let n0 be such that kerϕn � kerϕn�1 for n ¥ n0. We will show
that if n ¥ n0, then ϕn : R{ kerϕn Ñ R{ kerϕn is injective. Let x P R{ kerϕn.
Saying ϕnpxq � 0 is equivalent to saying ϕpxq P kerϕn, which is equivalent to
saying x P kerϕn�1. Since kerϕn�1 � kerϕn, we see that x P kerϕn, or x � 0
in R{ kerϕn. Thus, ϕn is injective.
c) Let πn : R Ñ R{ kerϕn be the canonical surjection. Then πn is in fact
a morphism between local dynamical systems pR,ϕq Ñ pR{ kerϕn, ϕnq. Let
πnpxq P R{ kerϕn. Since ϕ is integral, x satisfies an equation

xn � ϕpan�1qx
n�1 � . . .� ϕpa1qx� ϕpa0q � 0, ai P R.

Apply πn and note that since πn is a morphism, πn � ϕ � ϕn � πn. We obtain

pπnpxqq
n
� ϕn pπnpan�1qq pπnpxqq

n�1
� . . .� ϕn pπnpa0qq � 0.

Thus πnpxq is integral over the subring ϕnpR{ kerϕnq of R{ kerϕn.

Proposition 15 Let pR,m, ϕq be a local algebraic dynamical system, where ϕ
is integral. Let ϕn be the self-map induced by ϕ on R{ kerϕn, n P N, and let
πn : RÑ R{ kerϕn be the canonical surjection. Fix a large enough n for which
ϕn is injective and let p be the smallest integer such that aϕ p

n is the identity
map on MinpR{ kerϕnq. Then

a) aπn
�

MinpR{ kerϕnq
�
� MinpRq X V pkerϕnq.

b) If pi P MinpRq X V pkerϕnq then pi is ϕp-invariant.
c) For pi P MinpRq X V pkerϕnq if ϕpi

is the self-map induced by ϕp on R{pi

halgpϕ,Rq �
1

p
�max

 
halgpϕpi

, R{piq | pi P MinpRq X V pkerϕnq
(
.
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Proof a) It is clear that aπn
�

MinpR{ kerϕnq
�
� MinpRqXV pkerϕnq. To show

the inclusion in the other direction, let ϕ̃n : R{ kerϕn ãÑ R be the map induced
by ϕn. We have a commuting diagram

R R

R{ kerϕn

ϕn

πn
ϕ̃n

Let p P aπn
�

MinpR{ kerϕnq
�
. If p R MinpRq, then it would contain a prime

ideal p1 P MinpRq. By assumption ϕn is injective and integral. Thus, aϕn
must permute elements of MinpR{ kerϕnq by Proposition 13. In particular,
ϕ�n
n pπnppqq P MinpR{ kerϕnq. Since pϕ̃nq�1pp1q � pϕ̃nq�1ppq � ϕ�n

n pπnppqq,
we see that pϕ̃nq�1pp1q P MinpR{ kerϕnq. Thus, pϕ̃nq�1pp1q � pϕ̃nq�1ppq. But
this is a contradiction, because ϕn is integral, and there can be no inclusion
between prime ideals of R lying over ϕ�n

n pπnppqq [27, Theorem 9.3]. Thus,
p P MinpRq as claimed.
b) πn : pR,ϕpq Ñ pR{ kerϕn, ϕ p

n q is a morphism between local dynamical
systems. In other words, there is a commutative diagram

R R

R{ kerϕn R{ kerϕn.

ϕp

πn

ϕp
n

πn

From this diagram and the assumption that aϕ p
n is the identity map on

MinpR{ kerϕnq, and by part a) it quickly follows that ϕpppiqR � pi, for all
pi P MinpRq X V pkerϕnq.
c) By Proposition 14-a and Proposition 6

halgpϕ,Rq �
1

p
� halgpϕ

p
n , R{ kerϕnq.

Applying Proposition 8 to the local algebraic system pR{ kerϕn, ϕ p
n q we obtain

halgpϕ
p
n , R{ kerϕnq � max

 
halg

�
ϕpi

,
R{ kerϕn

pi{ kerϕn
�
| pi P MinpRq X V pkerϕnq

(
,

where ϕpi
is the self-map induced by ϕ p

n on pR{ kerϕnq{ppi{ kerϕnq. To finish
the proof, apply Proposition 3 first and then Proposition 2 to obtain

halg
�
ϕpi

,
R{ kerϕn

pi{ kerϕn
�
� halgpϕpi

, R{piq.
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1.9 Alternative methods for computing entropy

In this section we will show that algebraic entropy can be computed using any
module of finite length. We begin with a definition.

Definition 6 Let R be a Noetherian local ring, and let ϕ be a self-map of R.
Let R-Mod be the category of R-modules. For every n P N we define a functor
Φn : R-Mod Ñ R-Mod as follows: if M P R-Mod, then

ΦnpMq :�M bR ϕ
n
� R, (9)

where the R-module structure of ΦnpMq is defined to be

r � x �
¸
mi b r � ri, if x �

¸
mi b ri P ΦnpMq and r P R.

For the Frobenius endomorphism the functors defined in Definition 6 are
known as Frobenius functors. They were first introduced in [32, Definition 1.2].
Important properties of Frobenius functors were established in [32] and [19].
The same proofs can be re-written for the functors Φn and will establish the
next proposition.

Proposition 16 Let R be a Noetherian local ring, and let ϕ be a local self-map
of R. The functor Φn, n P N has the following properties:

a) Φn is a right-exact functor.
b) If Rs is a finitely generated free module, then ΦnpRsq � Rs.
c) Let Rs

α
Ñ Rt be a map of finitely generated free R-modules. Choose bases

Bs and Bt for Rs and Rt, and let paijq be the matrix representation of
α in these bases. Then the matrix representation of Φnpαq in the bases of
ΦnpRsq and ΦnpRtq obtained from Bs and Bt by applying the isomorphism
of part b) is pϕnpaijqq.

d) If a is an ideal of R, then ΦnpR{aq � R{ϕnpaqR, as R-modules.
e) If M is an R-module of finite length, then ΦnpMq is an R-module of finite

length, and `RpΦ
npMqq ¤ `RpMq � λpϕnq.

Proof As mentioned above, parts a) to d) are standard. Part e) is restatement
of Proposition 4 in terms of Φn.

Proposition 17 Let pR,ϕq be a local algebraic dynamical system. If M is a
nonzero module of finite length, then

halgpϕ,Rq � lim
nÑ8

1

n
� log `RpΦ

npMqq.

Proof By Proposition 16-d, ΦnpR{mq � R{ϕnpmqR. Thus,

`RpΦ
npR{mqq � `RpR{ϕ

npmqRq � λpϕnq.

Since M is of finite length, there is a surjection M Ñ R{m Ñ 0. Apply
the functor Φn to obtain a surjection ΦnpMq Ñ ΦnpR{mq Ñ 0. Using this
surjection and by Propositiob 16-e

λpϕnq � `RpΦ
npR{mqq ¤ `RpΦ

npMqq ¤ λpϕnq � `RpMq.

The result follows after applying logarithm, dividing by n and letting nÑ8.
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Proposition 18 Let pR,m, ϕq be a local algebraic dynamical system. Assume
ϕpmqR � m. Then

lim
nÑ8

1

n
� log `R pm{ϕ

npmqRq � halgpϕ,Rq.

Proof From the exact sequence: 0 Ñ m{ϕnpmqRÑ R{ϕnpmqRÑ R{mÑ 0,

`R pm{ϕ
npmqRq � `R pR{ϕ

npmqRq � `R pR{mq

� `R pR{ϕ
npmqRq � 1.

Since ϕpmqR � m, λpϕnq � `R pR{ϕ
npmqRq ¥ 2. Thus

1

2
λpϕnq ¤ λpϕnq � 1 � `R pm{ϕ

npmqRq ¤ λpϕnq.

Apply logarithm, divide by n and let n approach infinity.

2 Regularity and contracting self-maps

Our main objective in this section is to give a proof of Theorems 2 and 3.
Let pR,mq be a Noetherian local ring of positive prime characteristic p and
of dimension d, and let ϕ be the Frobenius endomorphism of R. In [23] Kunz
showed that the following conditions are equivalent:

a) R is regular.
b) ϕ is flat.
c) λpϕq � pd.
d) λpϕnq � pnd for some n P N.

Later Rodicio showed in [33], that these conditions are also equivalent to

e) flat dimR ϕ�R   8.

At first glance, Kunz’ conditions c) and d) appear to be stated in terms of
the characteristic p of the ring and one may not expect to be able to extend,
or even state them in arbitrary characteristic. Nevertheless, algebraic entropy
can be used to make sense of Kunz’ numerical conditions c) and d) for all
self-maps of finite length in any characteristic. Theorem 2 states that with
this new interpretation, all conditions in Kunz’ result are still equivalent.

We should also note that in [4, Theorem 13.3] Avramov, Iyengar and Miller
have extended the equivalence of conditions a) and b) of Kunz and e) of Rodi-
cio to contracting local self-maps of Noetherian local rings in all characteristics.

We list two results here that we will need in our proof of Theorem 2.

Lemma 8 ([19, Lemma 3.2]) Let pR,mq be a Noetherian local ring, and let
M be a finitely generated R-module. Consider an ideal b � m of R. Then there
exists an integer µ0 ¥ 0 such that depthpm, bµMq ¡ 0 for all µ ¥ µ0.
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Remark 8 Lemma 8 must be used together with the standard convention that
the depth of the zero module is 8 (see, for example, [20, p. 291]). Otherwise,
if M is an R-module of finite length, then for µ " 0 we have mµM � p0q, and
this would have been a counter-example to Lemma 8.

The next proposition is taken from [8, Chap. 10, § 1, Proposition 1].

Proposition 19 Let R be a Noetherian ring and let a be an ideal of R. Let
0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be an exact sequence of R-modules. If we define
d1 � depthpa,M 1q, d � depthpa,Mq, and d2 � depthpa,M2q, then one of the
following mutually exclusive possibilities hold:

d1 � d ¤ d2 or d � d2   d1 or d2 � d1 � 1   d.

2.1 Kunz’ Regularity Criterion via algebraic entropy

In order to prove Theorem 2 we first need to establish two lemmas. We begin
with a flatness criterion that is due to Nagata. A proof can be found in [30,
Chap. II, Theorem 19.1]. See also [27, Ex. 22.1, p. 178].

Theorem 5 (Nagata) Let g : pR,mq Ñ pS, nq be an injective homomorphism
of finite length of Noetherian local rings. Then S is flat over R, if and only if
for every m-primary ideal q of R,

`RpR{qq � `SpS{gpmqSq � `SpS{gpqqSq. (10)

We need a stronger version of Nagata’s theorem that we state and prove here.

Lemma 9 Let g : pR,mq Ñ pS, nq be a homomorphism of finite length of
Noetherian local rings. If Equation 10 holds for a family of m-primary ideals
tqαuαPA that define the m-adic topology, then it holds for all m-primary ideals.

Proof Let q be an m-primary ideal. We will show Equation 10 holds for q.
First, using Proposition 4

`SpS{gpqqSq � `SpS bR R{qq ¤ λpgq � `RpR{qq.

To show the reverse inequality, note that by assumption there is a qα � q. The
exact sequence 0 Ñ q{qα Ñ R{qα Ñ R{qÑ 0 yields

`RpR{qαq � `RpR{qq � `Rpq{qαq. (11)

If we tensor the previous exact sequence with S, we obtain an exact sequence
of S-modules q{qα bR S Ñ S{gpqαqS Ñ S{gpqqS Ñ 0. Thus

`SpS{gpqαqSq ¤ `SpS{gpqqSq � `Spq{qα bR Sq.

Since Equation 10 holds for qα, and by using Proposition 4 we quickly see

`RpR{qαq � λpgq ¤ `SpS{gpqqSq � `Rpq{qαq � λpgq.

Now using Equation 11 we quickly obtain λpgq � `RpR{qq ¤ `SpS{gpqqSq.
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Lemma 10 Let pR,m, ϕq be a local algebraic dynamical system, and let a be
a ϕ-invariant ideal of R. Let ϕ be the self-map of R{a induced by ϕ. Set
d :� dimR and d :� dimR{a and let qpϕq be as defined in Theorem 2.
i) If λpϕnq � qpϕqnd for some n P N, then λpϕntq � qpϕqntd for all t P N.
ii) If in addition to the assumption in i) we have halgpϕ,R{aq � halgpϕ,Rq

and if ϕ is contracting, then a � p0q.

Proof i) Let t P N. As the sequence tlog λpϕntq{pntqu converges to its infimum
by Theorem 2,

halgpϕ,Rq ¤ log λpϕntq{pntq.

From this inequality we quickly obtain qpϕqntd ¤ λpϕntq. Also, by Corollary 5,
λpϕntq ¤ λpϕnqt. Using assumption i) and the previous inequalities we obtain

qpϕqntd ¤ λpϕntq ¤ λpϕnqt � qpϕqntd.

Hence, λpϕntq � qpϕqntd for all t P N.
ii) Similar to the previous part, we can write

qpϕqntd ¤ λpϕntq ¤ λpϕntq � qntd. (12)

From assumption ii) it follows qpϕqd � qpϕqd. Then from Equation 12 we
conclude λpϕntq � λpϕntq for all t P N. Since λpϕntq � `RpR{rϕ

ntpmqR � asq
by Proposition 3, we obtain

`RpR{rϕ
ntpmqR� asq � `RpR{ϕ

ntpmqRq, @t P N. (13)

The surjection R{ϕntpmqR Ñ R{rϕntpmqR � asq Ñ 0 and Equation 13 then
show

R{rϕntpmqR� as � R{ϕntpmqR, @t P N.

Hence,
a �

�
tPN ϕ

ntpmqR � p0q,

where the last equality follows from Remark 1 because ϕ is by assumption,
contracting.

Proof (of Theorem 2) a) ñ b): To say that ϕ is of finite length means
dimR{ϕpmqR � 0. Hence, the following equation holds:

dimR � dimR� dimR{ϕpmqR.

Since R is regular, the result follows from [27, Theorem 23.1].
b) ñ c): This follows from Corollary 5. Since ϕ is flat by assumption, by that
corollary λpϕnq � λpϕqn for all n P N . Thus, by definition of algebraic entropy

halgpϕ,Rq � lim
nÑ8

p1{nq � log λpϕnq

� lim
nÑ8

p1{nq � log λpϕqn

� log λpϕq.
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This means λpϕq � qpϕqd.
c) ñ d): This is clear.
b) ñ a): We use Herzog’s proof in [19, Satz 3.1]. We re-write it for an arbitrary
self-map here. See also [9, Lemma 3]. To show that R is regular, it suffices to
show all finitely generated R-modules have finite projective dimension. So let
M be a finitely generated R-module. Suppose M were of infinite projective
dimension. Consider a minimal (infinite) free resolution of M

L ÑM Ñ 0.

Let s :� depthpm, Rq, and take an R-regular sequence of elements tx1, . . . , xsu
in m. Write a for the ideal generated by this regular sequence. (If s � 0, take
a � p0q.) Let Φn be the functor defined in Definition 6. For every n P N we set

Cn :� ΦnpLq bR R{a and Bni :� imagepCni�1 Ñ Cni q.

Using Proposition 16-b, we quickly see that Cni � Li{aLi. This shows that
Cni is independent of n, and that Cni is a nonzero finitely generated module of
depth zero for all i. Using Proposition 16-c, we can see that Bni � ϕnpmqCni .
Applying Lemma 8, let µi0 be such that depthpm,mµi0Cni q ¡ 0. Since ϕ is
contracting by assumption, from Remark 1 it easily follows that if n is large
enough, then ϕnpmqR � mµi0 and in that case, Bni � ϕnpmqCni � mµi0Cni .
This shows that depthpm, Bni q ¡ 0 for large n. On the other hand, since ϕ is
flat, ΦnpLq is exact. Thus, by parts a), b), and c) of Proposition 16

ΦnpLq Ñ ΦnpMq Ñ 0

is a minial (infinite) free resolution of ΦnpMq. Hence

HipC
n
 q � TorRi pΦ

npMq, R{aq � 0, for i ¡ s.

This shows that if i ¡ s, then the sequences

0 Ñ Bni�1 Ñ Cni�1 Ñ Bni Ñ 0 (14)

are exact for all n P N. Take i � s � 1 in Sequence 14, for instance. By the
above argument, if we take n large enough, we will obtain depthpm, Bns�1q ¡ 0
and depthpm, Bns�2q ¡ 0, while depthpm, Cns�2q � 0. By Proposition 19 this is
not possible. Hence, the projective dimension of M must be finite.
d) ñ b): We will use Nagata’s Flatness Theorem to show that ϕn is flat.
We first need to show that ϕ is injective. Clearly kerϕ is ϕ-invariant. Let
ϕ be the local self-map induced by ϕ on R{ kerϕ. Then by Proposition 14,
halgpϕ,Rq � halgpϕ,R{ kerϕq. By assumption, λpϕnq � qpϕqnd for some n P N.
From Lemma 10 it follows that kerϕ � p0q.

Now since ϕ is contracting, using Remark 1 we quickly see that the family
tϕntpmqRutPN defines the m-adic topology of R. By Lemma 9 it suffices to
verify Equation 10 for this family of m-primary ideals. We need to show

`R
�
R{ϕnpϕntpmqqR

�
� `R

�
R{ϕntpmqR

�
� `R

�
R{ϕnpmqR

�
.
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This equation translates into λpϕnpt�1qq � λpϕntq � λpϕnq. Using Lemma 10,
this equality holds, if and only if

qpϕqnpt�1qd � qpϕqntd � qpϕqnd.

Since this equality holds trivially, by Nagata’s Flatness Theorem ϕn is flat.
The implication b ñ a) of Theorem 2 applied to ϕn then tells us that R is
regular, and the implication a ñ b) of the same theorem shows that ϕ is flat,
as well.

2.2 Generalized Hilbert-Kunz multiplicity

Following ideas of Kunz, Monsky in [29] defined the Hilbert-Kunz multiplicity
for the Frobenius endomorphism of Noetherian local rings of positive prime
characteristic. He then showed that in this case, Hilbert-Kunz multiplicity
always exists. Since then, it has become evident through works of various
authors, that the Hilbert-Kunz multiplicity provides a reasonable measure of
the singularity of the local ring. Here, inspired by part c) of Theorem 1, we
propose a characteristic-free interpretation of the definition of Hilbert-Kunz
multiplicity associated with a self-map of finite length.

Definition 7 (Hilbert-Kunz multiplicity) Let pR,ϕq be a local algebraic
dynamical system and set d :� dimR. Let qpϕq :� expphalgpϕ,Rq{dq. The
Hilbert-Kunz multiplicity of R with respect to ϕ is defined as

eHKpϕ,Rq :� lim
nÑ8

λpϕnq

qpϕqnd
, (15)

provided that the limit exists.

Remark 9 We do not know whether the limit in Equation 15 always exists or
not. Nevertheless, the next corollary shows that in the case of a regular local
ring the Hilbert-Kunz multiplicity is precisely what we expect it to be.

Corollary 17 Let ϕ be a self-map of finite length of a regular local ring R.
Then eHKpϕ,Rq � 1.

Proof This quickly follows from Theorem 2 and Corollary 5.

We end this section with a note that not all homological properties of the
Frobenius endomorphism extend to arbitrary self-maps. For example, in [32,
Theorem 1.7, p. 58] Peskine and Szpiro showed that a finite free resolution of a
module remains exact after applying the Frobenius functor (see Definition 6).
This property may fail in general, for an arbitrary self-map, even in the simple
case of a Koszul complex with one element. The image of a non-zerodivisor
under an integral self-map could be a zerodivisor, as the next example shows.
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Example 7 Consider the polynomial ring krx, y, z, ws over a field k. Let a be
the ideal px2, xy, xz, zwq and let A � krx, y, z, ws{a. Then

AsspAq � tpx, zq, px,wq, px, y, zqu.

Define a self-map ϕ of krx, y, z, ws as follows x
ϕ
ÞÑ x2; y

ϕ
ÞÑ y; z

ϕ
ÞÑ w; w

ϕ
ÞÑ z.

a is ϕ-invariant. Let ϕ be the self-map of A induced by ϕ. The A-module ϕ�A
is finitely generated. In fact, it is generated by 1 and x as an A-module. Now,
y � w is not a zerodivisor in A because it does not belong to any prime ideal
in AsspAq. But ϕpy � wq � y � z is a zerodivisor in A; it is killed by x, for
example. On the other hand, y � z is a zerodivisor but is mapped to y �w, a
non-zerodivisor.

Nonetheless, in the previous example ϕ2 sends any A-regular sequence to an
A-regular sequence. This motivates the following

Question 1 Let pR,ϕq be a local algebraic dynamical system. Does there exist
a positive integer n such that ϕn will send any R-regular sequence to an R-
regular sequence?

2.3 The Cohen-Fakhruddin Structure Theorem

In this section we will prove Theorem 3. This theorem is inspired by a result of
Fakhruddin on lifting polarized self-maps of projective varieties to an ambient
projective space. In [11, Corollary 2.2] Fakhruddin showed that given a self-
map ϕ of a projective variety X over an infinite field K and an ample line
bundle L on X with ϕ�pLq � Lb q for some q ¥ 1 (polarized condition), there
exists an embedding ı of X in some PNK , given by an appropriate tensor power
Lbn of L, and a self-map ψ of PNK such that ψ � ı � ı � ϕ. In [5, Theorem 1]
Szpiro and Bhatnagar relaxed some of Fakhruddin’s hypotheses and showed
that one can keep the same embedding of X given by L, and instead lift an
appropriate power ϕr of the self-map to the ambient projective space.

In this section we will consider the analogous lifting problem for self-maps
of of finite length of complete Noetherian local rings of equal characteristic.
Theorem 3 states that if pA,ϕq is a local algebraic dynamical system with A a
homomorphic image π : R � A of a complete equicharacteristic regular local
ring R, then there exists a (non unique) self-map of finite length ψ of R, such
that π : pR,ψq Ñ pA,ϕq is a morphism of local algebraic dynamical systems.
As an improvement over Fakhruddin’s result, we do not assume our fields to
be infinite.

We begin with a few preparatory results that will be needed in the proof
of Theorem 3.

Definition 8 ([35, p. 159]) In a Noetherian local ring R of dimension d
and of embedding dimension e, a system of parameters tx1, . . . , xdu is called
a strong system of parameters if it is part of a minimal set of generators
tx1, . . . , xd, . . . , xeu of the maximal ideal.
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Lemma 11 A Noetherian local ring pR,mq has strong systems of parameters.

Proof Let k be the residue field of R, e the embedding dimension of R, and
d � dimR. If d � 0 then the statement holds trivially, since every system of
parameters is empty. So we assume d ¡ 0. We will use the Prime Avoidance
Lemma [26, p. 2] to construct a strong system of parameters inductively. It
suffices to construct a sequence of elements x1, . . . , xd P m such that

a) dimR{ 〈x1, . . . , xi〉 � d� i, for 1 ¤ i ¤ d, and
b) the images of x1, . . . , xd in m{m2 are linearly independent over k.

To choose x1, let tp1, . . . , ptu be the set of minimal prime ideals of R with the
property dimR{pi � d. By the Avoidance Lemma we can choose an element

x1 P mz
�
m2 Y p1 Y . . .Y pt

�
.

Then dimR{ 〈x1〉 � d � 1 and the image of x1 in m{m2 is linearly indepen-
dent over k. Now let r � 1   d and suppose we have chosen a sequence of
elements x1, . . . , xr�1 in m with desired properties a) and b). To choose the
next element xr, let tq1, . . . , qsu be the set of minimal associated prime ideals
of R{ 〈x1, . . . , xr�1〉 that satisfy dimR{qi � d� r� 1. Since r� 1   d ¤ e, we
cannot have m � m2 � 〈x1, . . . , xr�1〉. Hence, by the Avoidance Lemma there
is an element

xr P mz
�
m2 � 〈x1, . . . , xr�1〉Y q1 Y . . .Y qs

�
.

Then dimR{ 〈x1, . . . , xr〉 � d� r. To complete the proof we need to show that
the images x1, . . . , xr of x1, . . . , xr in m{m2 are linearly independent over k. If
not, then since by induction hypothesis x1, . . . , xr�1 are linearly independent
over k, we must have a dependence relation of the form

α1x1 � . . .� αr�1xr�1 � xr � 0

in m{m2, with αi P k. Thus, if for 1 ¤ i ¤ r � 1 we choose elements ai P R
such that they map to αi in R{m, then a1x1 � . . . � ar�1xr�1 � xr P m2, or
xr P m2 � 〈x1, . . . , xr�1〉. This contradicts the choice of xr. Thus, the images
of x1, . . . , xr in m{m2 must be linearly independent over k.

Lemma 12 Let pR,mq be a complete local ring of equal characteristic and
assume that A is a homomorphic image π : RÑ A of R. If K is a subfield of
A, then there is a subfield L of R such that π|L : LÑ K is an isomorphism.

Proof Let B � π�1pKq. Then B is a local subring of R with maximal ideal
q � π�1p0q. Note that q � kerπ as subsets of R. Since B{q � K, B is also
of equal characteristic. In general B need not be Noetherian. We claim that
B � R is a closed subset in the m-adic topology of R. To see this, let n be
the maximal ideal of A and note that the topology induced from the n-adic
topology of A on any subfield of A is the discrete topology. Therefore, any
subfield of A is complete with respect to the topology induced from A, and
hence is closed in A. Since π is a continuous map and B � π�1pKq, the claim
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follows. In particular, B is complete with respect to the topology induced from
the m-adic topology of R.

Denote the q-adic completion of B by pB. Since B is a local subring of
R and R is complete, we obtain a map pi : pB Ñ R, where i : B ãÑ R is the
inclusion homomorphism. Furthermore, since B is complete with respect to the
topology induced from the m-adic topology of R, we see that pip pBq � B. Let

L1 be a coefficient field of pB (For the existence of coefficient fields in complete
local rings that are not necessarily Noetherian, see [30, Theorem 31.1], or [27,

Theorem 28.3] or [14, Corollary 2]). Let L :� pipL1q. Then L is subfield of B
that is isomorphic to L1. Furthermore, the following diagram is commutative,
and shows that π|L : LÑ K is an isomorphism.

L1 pB B L

pB{pq K

pi

�

�

π|B

�

Proof (of Theorem 3) Let K be an arbitrary coefficient field of R. Then
ϕ pπpKqq is a subfield of A, and can be lifted to a subfield L of R, by Lemma 12,
in such a way that π|L : LÑ ϕ pπpKqq is an isomorphism. We will use L at the
end of our proof to construct the self-map ψ of R. Let d � dimA and let e be
the embedding dimension of A. By Lemma 11 we can choose a strong system
of parameters tx1, . . . , xdu of A which is part of a minimal set of generators
tx1, . . . , xd, . . . , xeu of n. Choose elements X1, . . . , Xe in m in such a way that
π pXiq � xi for each i. We claim that since the images of x1, . . . , xe in n{n2 are
linearly independent over A{n, the images X1, . . . , Xe of X1, . . . , Xe in m{m2

are also linearly independent over R{m. If not, there will be a dependence
relation α1X1 � . . .� αeXe � 0 with αi P R{m not all zero. This means if we
choose ai P R such that they map to αi in R{m for 1 ¤ i ¤ e, then

a1X1 � . . .� aeXe P m2.

If we apply π to this relation, we obtain πpa1qx1� . . .�πpaeqxe P n2. But then
the image in n{n2 would provide a nontrivial dependence relation

πpa1qx1 � . . .� πpaeqxe � 0,

contradicting the linear independence of x1, . . . , xe in n{n2 over A{n. Our claim
follows. Hence, we can extend tX1, . . . , Xeu to a basis tX1, . . . , Xe, . . . , Xnu
of m{m2 over R{m, where n � dimR. If we choose elements Xi P m such that
they map to Xi in m{m2 for e � 1 ¤ i ¤ n, then by Nakayama’s Lemma
tX1, . . . , Xnu is a minimal set of generators of m. Furthermore, it follows from
the Cohen Structure Theorem that R � KJX1, . . . , XnK.

Now consider elements ϕ pπpXiqq in A and for 1 ¤ i ¤ d choose fi P m such
that πpfiq � ϕ pπpXiqq. We claim that the ideal 〈f1, . . . , fd〉 of R has height
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d. First, by Krull’s Theorem ht 〈f1, . . . , fd〉 ¤ d. For inequality in the other
direction, we show the ideal b :� 〈ϕ pπpX1qq , . . . , ϕ pπpXdqq〉 is n-primary.
This follows from Proposition 1 because ϕ is of finite length and tx1, . . . , xdu
is a system of parameters of A. Hence the ideal π�1pbq � 〈f1, . . . , fd〉� kerπ
is m-primary in R. Since R is regular, by Serre’s Intersection Theorem [36,
Chap. V, Theorem 1]

dimR{ kerπ � dimR{ 〈f1, . . . , fd〉 ¤ dimR,

or, d � dimR{ 〈f1, . . . , fd〉 ¤ n. But dimR{ 〈f1, . . . , fd〉 � n � ht 〈f1, . . . , fd〉
as R is regular. We obtain ht 〈f1, . . . , fd〉 ¥ d and our claim follows.

Next, we will choose elements fd�1, . . . , fn P m inductively, making sure at
each step that πpftq � ϕpπpXtqq and that dimR{ 〈f1, . . . , ft〉 � n� t. Assume
d ¤ t   n and that f1, . . . ft have been chosen with desired properties. To
choose ft�1 we use the coset version of the Prime Avoidance Lemma due to
E. Davis (see [21, Theorem 124] or [27, Exercise 16.8]), that can be stated as
follows: let I be an ideal of a commutative ring R and x P R be an element.
Let p1, . . . , ps be prime ideals of R none of which contain I. Then

x� I �
�s
i�1 pi.

Choose an element u P m such that πpuq � ϕ pπpXt�1qq. If

dimR{ 〈f1, . . . ft, u〉 � n� t� 1,

then set ft�1 � u. If not, let tp1, . . . , psu be the set of minimal associated
prime ideals of R{ 〈f1, . . . , ft〉 that satisfy dimR{pi � dimR{ 〈f1, . . . , ft〉.
Since 〈f1, . . . , ft〉 � kerπ is an m-primary ideal in R, none of these pi’s can
contain kerπ. Therefore by the coset version of the Prime Avoidance Lemma
there exists an element a P kerπ such that

u� a R
�s
i�1 pi.

Setting ft�1 � u � a we see dimR{ 〈f1, . . . , ft�1〉 � n � t � 1 and πpft�1q �
ϕ pπpXt�1qq, as desired. After choosing tf1, . . . , fnu as described, we define
a self-map ψ of R � KJX1, . . . , XnK as follows. For each 1 ¤ i ¤ n, we
define ψpXiq to be fi and for every element α of K we define ψpαq to be

pπ|Lq
�1
pϕ pπpαqqq. Then we extend the definition of ψ to all elements of R

by continuity. Since ψpmqR � 〈f1, � � � , fn〉 is m-primary by construction of
the fi’s, ψ is of finite length. Moreover, it is clear from the construction that
ϕ � π � π � ψ, that is, π : pR,ψq Ñ pA,ϕq is a morphism of local algebraic
dynamical systems.

Corollary 18 If in Theorem 3 ϕ is finite, then so is ψ.

Proof This follows from [10, Theorem 8]: a local homomorphism f : S Ñ T of
complete Noetherian local rings is finite if and only if f is of finite length, and
rf� kT : kSs is a finite (algebraic) field extension, where kS and kT are residue
fields of S and T .



Entropy in local algebraic dynamics 33

Remark 10 Let X be a projective variety over a field K with a self-map ϕ, and
let L be an ample line bundle on X such that ϕ�pLq � Lb q for some q ¥ 1.
Then some appropriate tensor power Lbn of L is very ample and can be used to
embed X in some projective space PNK , realizing X as ProjKrX1, � � � , XN s{a
for some graded ideal a. Let

π : KrX1, . . . , XN s Ñ KrX1, � � � , XN s{a

be the canonical surjection, m � 〈X1, � � � , XN 〉 and mX � 〈πpX1q, � � � , πpXN q〉
be the corresponding irrelevant maximal ideals. Then ϕ will induce a gradedK-
self-map of finite length of KrX1, � � � , XN s{a, which we will also denote by ϕ.
The proof of Theorem 3 can be re-written in this setting, keeping careful track
of grading, to lift ϕ to a gradedK-self-map of finite length ψ ofKrX1, . . . , XN s.
This shows the assumption in [11, Corollary 2.2], that K is infinite can be
avoided.
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ALMOST NEWTON, SOMETIMES LATTÈS

BENJAMIN HUTZ AND LUCIEN SZPIRO

1. Introduction

Given a morphism ϕ : P1 → P1 we can iterate ϕ to create a (discrete) dynamical system. We
denote the nth iterate of ϕ as ϕn = ϕ(ϕn−1). Calculus students are exposed to dynamical systems
through the iterated root finding method known as Newton’s Method where given a differentiable
function f(x) and an initial point x0 one constructs the sequence

xn+1 = ϕ(xn) = xn − f(xn)

f ′(xn)
.

In general, this sequence converges to a root of f(x). In terms of dynamics, we would say that the
roots of f(x) are attracting fixed points of ϕ(x). More generally, one says that P is a periodic point
of period n for ϕ if ϕn(P ) = P .

A common example of a dynamical system with periodic points is to take an endomorphism of
an elliptic curve [m] : E → E and project onto the first coordinate. This construction induces a
map on P1 called a Lattès map, and for m ∈ Z its degree is m2 and its periodic points are the
torsion points of the elliptic curve.

Denote Homd as the set of degree d morphisms on P1. There is a natural action on P1 by PGL2

through conjugation that induces an action on Homd. We take the quotient asMd = Homd /PGL2.
By [6], the moduli space Md is a geometric quotient. We say that γ ∈ PGL2 is an automorphism
of ϕ ∈ Homd if γ−1 ◦ ϕ ◦ γ = ϕ. We denote the (finite [4]) group of automorphisms as Aut(ϕ).

In this note, we examine a family of morphisms on P1 with connections to Newton’s method,
Lattès maps, and automorphisms. Let K be a number field and F ∈ K[X,Y ] be a homogeneous
polynomial of degree d with distinct roots. Define

ϕF (X,Y ) = [FY ,−FX ] : P1 → P1.

In Section 2 we examine the dynamical properties of these maps.

Theorem. The fixed points of ϕF (X,Y ) are the solutions to F (X,Y ) = 0, and the multipliers of
the fixed points are 1− d.

Theorem. The family of maps of the form ϕF = (FY ,−FX) : P1 → P1 is invariant under the
conjugation action by PGL2.

We also give a description of the higher order periodic points and a recursive definition of the
polynomial whose roots are the n-periodic points. We also examine related, more general Newton-
Raphson maps and, finally, recall the connection to invariant theory and maps with automorphisms.

In Section 3 we explore the connection with Lattès maps.

Theorem. Maps of the form

ϕ̃(x) = x− 3
f(x)

f ′(x)

are the Lattès maps from multiplication by [2] and f(x) =
∏
(x−xi) where xi are the x-coordinates

of the 3-torsion points.
1



Finally, when E has complex multiplication (m ̸∈ Z) the associated ϕF can have a non-trivial
automorphism group.

Theorem. If E has Aut(E) ) Z/2Z and the zeros of F (X,Y ) are torsion points of E, then an
induced map ϕF has a non-trivial automorphism group.

2. Almost Newton Maps

Let K be a field and consider a two variable homogeneous polynomial F (X,Y ) ∈ K[X,Y ] of
degree d with no multiple roots. Consider the degree d− 1 map

ϕF : P1 → P1

(X,Y ) 7→ (FY (X,Y ),−FX(X,Y )).

In particular, FX = FY = 0 has no nonzero solutions and so ϕF is a morphism. We will make fre-
quent use of the Euler relation for homogeneous polynomials, so we recall it here for the convenience
of the reader.

Lemma 1 (Euler Relation). Let F (X1, . . . , Xn) be a homogeneous polynomial of degree d, then∑
i

Xi
∂F

∂Xi
= dF.

Label x = X
Y and consider

f(x) =
F (X,Y )

Y d

and notice that

f ′(x) =
FX(X,Y )

Y d−1
.

Lemma 2. The map induced on affine space by ϕF is given by

ϕ̃F (x) = x− d
f(x)

f ′(x)

Proof.

ϕ̃F (x) = −FY (X,Y )

FX(X,Y )
= −Y FY (X,Y )

Y FX(X,Y )
=
XFX(X,Y )− dF (X,Y )

Y FX(X,Y )
= x− d

f(x)

f ′(x)
.

�

Definition 3. Let ϕ = (ϕ1, ϕ2) : P1 → P1 be a rational map on P1. Define Res(ϕ) = Res(ϕ1, ϕ2),
the resultant of the coordinate functions of ϕ. For a homogeneous polynomial F , denote Disc(F )
for the discriminant of F .

Proposition 4. Let F (X,Y ) be a homogeneous polynomial of degree d with no multiple roots.
Then,

Res(ϕF (X,Y )) = (−1)d(d−1)/2dd−2Disc(F (X,Y )).

Proof. Denote F (X,Y ) = adX
d + ad−1X

d−1Y + · · ·+ a0Y
d. Then we have

FX(X,Y ) = dadX
d−1 + · · ·+ a1Y

d−1

FY (X,Y ) = ad−1X
d−1 + · · ·+ da0Y

d−1.

2



From standard properties of resultants and discriminants we have

adD(F (X,Y )) = (−1)d(d−1)/2R(F (X,Y ), FX(X,Y ))

= (−1)d(d−1)/2 (−1)d

dd−1
R(dF (X,Y ),−FX(X,Y ))

= (−1)d(d−1)/2 (−1)d

dd−1
R(XFX(X,Y ) + Y FY (X,Y ),−FX(X,Y ))

= (−1)d(d−1)/2 (−1)d

dd−1
R(Y FY (X,Y ),−FX(X,Y )).

Now we see that

R(Y FY ,−FX) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ad−1 2ad−2 · · · da1 0
0 0 ad−1 2ad−2 · · · da1
...

...
−dad −(d− 1)ad−1 · · · −a1 0 0
0 −dad −(d− 1)ad−1 · · · −a1 0
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding down the first column we have

R(Y FY (X,Y ),−FX(X,Y )) = −dan(−1)d+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ad−1 2ad−2 · · · da1 0 0
0 ad−1 2ad−2 · · · da1 0
...

...
−dad −(d− 1)ad−1 · · · −a1 0 0
0 −dad −(d− 1)ad−1 · · · −a1 0
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
= dad(−1)d+2R(FY (X,Y ),−FX(X,Y )).

Thus, we compute

adD(F (X,Y )) = (−1)d(d−1)/2 (−1)d

dd−1
R(Y FY (X,Y ),−FX(X,Y ))

= (−1)d(d−1)/2 (−1)d

dd−1
(−1)d+2danR(FY (X,Y ),−FX(X,Y ))

= (−1)d(d−1)/2 ad
dd−2

R(FY (X,Y ),−FX(X,Y )).

�
Definition 5. Let P be a periodic point of period n for ϕ̃, then the multiplier at P is the value
(ϕ̃n)′(P ). If P is the point at infinity, then we can compute the multiplier by first changing
coordinates.

Theorem 6. The fixed points of ϕF (X,Y ) are the solutions to F (X,Y ) = 0, and the multipliers
of the fixed points are 1− d.

Proof. The projective equality
ϕ(X,Y ) = (X,Y )

is equivalent to
Y FY (X,Y ) = −XFX(X,Y ).

Using the Euler relation with then have

XFX(X,Y ) + Y FY (X,Y ) = dF (X,Y ) = 0.
3



Since d is a nonzero integer the fixed points satisfy F (X,Y ) = 0.
To calculate the multipliers, we first examine the affine fixed points. We take a derivative

evaluated at a fixed point to see

ϕ̃′F (x) = 1− d
f ′(x)f ′(x)− f(x)f ′′(x)

(f ′(x))2
= 1− d

f ′(x)f ′(x)

(f ′(x))2
= 1− d.

If a fixed point has multiplier one, then it would have multiplicity at least 2 and, hence, would be
at least a double root of F . Since F has no multiple roots, every multiplier is not equal to one.
Thus, to see that the multiplier at infinity (when it is fixed) is also 1− d we may use the relation
[7, Theorem 1.14]

(1)
d∑

i=1

1

1− λi
= 1.

�
Remark. If charK | d, then ϕF is the identity map. Let F (X,Y ) = adX

d+ad−1X
d−1Y+· · ·+a0Y d.

Then we have

FX(X,Y ) = (d− 1)ad−1X
d−1Y + · · · a1Y d−1 = Y ((d− 1)ad−1X

d−1 + · · · a1Y d−2)

FY (X,Y ) = ad−1X
d−1 + · · ·+ (d− 1)a1Y

d−2X = X(ad−1X
d−1 + · · ·+ (d− 1)a1Y

d−2).

Since −i ≡ d− i (mod d) we have that

ϕF (X,Y ) = (FY ,−FX) = (XP (X,Y ), Y P (X,Y )) = (X,Y ),

where P (X,Y ) is a homogeneous polynomial.

We next show that maps of the form ϕF form a family in the moduli space of dynamical systems.
In other words, for every γ ∈ PGL2 and ϕF , there exists a G(X,Y ) such that γ−1 ◦ ϕF ◦ γ = ϕG.
In fact, G(X,Y ) is the polynomial resulting from allowing γ−1 to act on F .

Theorem 7. Every rational map ϕ : P1 → P1 of degree d−1 whose fixed points are {(a1, b1), . . . , (ad, bd)}
all with multiplier (1− d) is a map of the form ϕF (X,Y ) = (FY (X,Y ),−FX(X,Y )) for

F (X,Y ) = (b1X − a1Y )(b2X − a2Y ) · · · (bdX − adY ).

Proof. Let (a1, b1), . . . , (ad, bd) be the collection of fixed points for the map ψ(X,Y ) : P1 → P1

whose multiplies are 1− d. Then on A1 we may write the map of degree d− 1 as

ψ̃(x) = x− P (x)

Q(x)

for some pair of polynomials P (x) and Q(x) with no common zeros. Let ϕ̃F (x) be the affine map
associated to F (X,Y ) = (b1X − a1Y ) · · · (bdX − adY ) and we can write

ϕ̃F (x) = x− d
f(x)

f ′(x)

where

f(x) =
F (X,Y )

Y d
.

The fixed points of ψ̃(x) are the points where P (x)
Q(x) = 0 and, hence, where P (x) = 0. The fixed

points of ψ̃(x) are the same as for ϕ̃F (x), so we must have P (x) = cf(x) for some nonzero constant
c. Using the fact that the multipliers are 1− d we get

ψ̃′(x) = 1− cf ′Q− cQ′

(Q′)2
= 1− cf ′

Q
= 1− d.
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Therefore we know that
c

d
f ′(xi) = Q(xi)

where x1, . . . , xd are the fixed points (or x1, . . . , xd−1 if (1, 0) ∈ P1 is a fixed point). Since f ′(x)
and Q(x) are both degree d− 1 polynomials (or d− 2), so this is a system of d (or d− 1) equations
in the d (or d − 1) coefficients of Q(x). Since the values xi are distinct (since the multipliers are
̸= 1) the Vandermonde matrix is invertible and we get a unique solution for Q(x). In particular,
we must have

c

d
f ′(x) = Q(x)

and thus
ψ̃(x) = ϕ̃(x).

�
Corollary 8. The family of maps of the form ϕF (X,Y ) = (FY (X,Y ),−FX(X,Y )) : P1 → P1 is in-
variant under the conjugation action by PGL2. In particular, the family of ϕF where degF (X,Y ) =
d is isomorphic to an arbitrary choice of d− 3 distinct points in P1.

Proof. Conjugation fixes the multipliers and moves the fixed points, so by Theorem 7 the conjugated
map is of the same form.

A map of degree d − 1 on P1 has d fixed points. The action by PGL2 can move any 3 distinct
points to any 3 distinct points. Thus, the choice of the remaining d − 3 fixed points determines
ϕF . �

2.1. Extended Example.

Proposition 9. Let F (X,Y ) be a degree 4 homogeneous polynomial with no multiple roots with
associated morphism ϕF (X,Y ). For any α ∈ Q − {0, 1} we have that ϕF (X,Y ) is conjugate to a
map of the form

ϕF,α(X,Y ) = (X3 − 2(α+ 1)X2Y + 3αXY 2,−3X2Y + 2(α+ 1)XY 2 − αY 3).

Proof. We can move three of the 4 fixed points to {0, 1,∞} with an element of PGL2 and label the
fourth fixed point as α. Then we have

F (X,Y, α) = (X)(Y )(X − Y )(X − αY ) = X3Y − (α+ 1)X2Y 2 + αXY 3

and

ϕF,α(X,Y ) = (FY (X,Y, α),−FX(X,Y, α))

= (X3 − 2(α+ 1)X2Y + 3αXY 2,−(3X2Y − 2(α+ 1)XY 2 + αY 3)).

�
Proposition 10. Let F (X,Y ) be a degree 4 homogeneous polynomial with no multiple roots with
associated morphism ϕF (X,Y ). Assume that ϕF (X,Y ) is in the form of Proposition 9. Then, the
two periodic points are of the form

{±
√
α, 1±

√
1− α, α±

√
α2 − α} ∪ {0, 1,∞, α}

Proof. Direct computation. �
Proposition 11. Q-Rational affine two periodic points are parameterized by pythagorean triples.

Proof. The values α and 1 − α are both squares and 0 < α < 1. Thus, there are relatively prime

integers p and q so that α = p2

q2
with p < q and 1 − α = q2−p2

q2
. Therefore, so r2 + p2 = q2 a

pythagorean triple, with r2 = (1− α)q2. �
5



Remark. The 2-periodic points are not the roots of f(ϕ̃(x)), see Theorem 13 for the general
relation.

For general F (X,Y ), ϕ2F (X,Y ) does not come from a homogeneous polynomial G.

2.2. Higher order periodic points. We set the following notation

f(x) =
F (X,Y )

Y d
=

d−1∑
i=0

aix
i

ϕ̃n(x) =
An(x)

Bn(x)

cn = − Bn+1(x)

FX(An(x), Bn(x))

where An(x) and Bn(x) are polynomials and cn is a constant.

Definition 12. Let Ψn(x) be the polynomial whose zeros are affine n-periodic points.
The polynomial Ψn(x) is the equivalent of the nth division polynomial for elliptic curves, see [3,

Chapter 2] for information on division polynomials.

While it is possible, to define Ψn(x) recursively, the relation is not as simple as for elliptic curves.
If we let ΨE,m be the m-division polynomial for an elliptic curve E, then

ΨE,2m+1 = ΨE,m+2Ψ
3
E,m −ΨE,m−1Ψ

3
E,m+1 for m ≥ 2

ΨE,2m =

(
ΨE,m

2y

)
(ΨE,m+2Ψ

2
E,m−1 −ΨE,m−2Ψ

2
E,m+1) for m ≥ 3.

Notice that these relations depend only on ΨE,m for variousm, whereas the formula in the following
theorem also involves iterates of the map.

Theorem 13. We have the following formulas

ϕ̃n(x) = x+ d
Ψn(x)

Bn(x)

and

Ψn+1(x) =
F (An(x), Bn(x))−Ψn(x)FX(An(x), Bn(x))

Bn(x)cn

with multipliers

n−1∏
i=0

(
1− d+ d

f(ϕi(x))f ′′(ϕi(x))

f ′(ϕi(x))2

)
.

Proof. We proceed inductively. For n = 1 we know that the fixed points are the zeros of f(x).

ϕ̃(x) = x− d
f(x)

f ′(x)
= x− d

f(x)

FX(A0(x), B0(x))
= x− d

f(x)

−B1(x)
= x+ d

Ψ1(x)

B1(x)
.

Now assume that

ϕ̃n(x) = x+ d
Ψn(x)

Bn(x)
.

6



Computing

ϕ̃n+1(x) = x+ d
Ψn(x)

Bn(x)
− d

f(ϕ̃n(x))

f ′(ϕ̃n(x))

= x+ d
Ψn(x)

Bn(x)
− d

F (An(x), Bn(x))

Bn(x)FX(An(x), Bn(x))

= x− d
F (An(x), Bn(x))−Ψn(x)FX(An(x), Bn(x))

Bn(x)FX(An(x), Bn(x))

= x− d
F (An(x), Bn(x))−Ψn(x)FX(An(x), Bn(x))

cnBn(x)Bn+1(x)
.

So we have to show thatBn(x) divides F (An(x), Bn(x))−Ψn(x)FX(An(x), Bn(x)). Working modulo
Bn(x) we see that

F (An(x), Bn(x))−Ψn(x)FX(An(x), Bn(x)) ≡ An(x)
d − (An(x)/d)dAn(x)

d−1 ≡ 0 (mod Bn(x))

where we used the induction assumption for Ψn(x). Thus, the n-periodic points are among the
roots of Ψn(x).

For equivalence, we count degrees. Again, proceeding inductively it is clear for n = 1. For n+ 1
we have that

deg(F (An(x), Bn(x)) = d(d− 1)n = (d− 1)n+1 + (d− 1)n

and

deg(Ψn(x)FX(An(x), Bn(x))) ≤ (d− 1)n + 1 + (d− 1)n+1

depending on whether the point at infinity is periodic or not. Thus,

deg(Ψn+1(x)) ≤ (d− 1)n + 1 + (d− 1)n+1 − (d− 1)n = (d− 1)n+1 + 1.

Since the number of (projective) periodic points of ϕn is (d− 1)n +1, every affine fixed point must
be a zero of Ψn(x).

We compute the multipliers as

ϕ̃′(x) = 1− d
f ′(x)2 − f(x)f ′′(x)

f ′(x)2
= 1− d+ d

f(x)f ′′(x)

f ′(x)2

(ϕ̃n(x))′ =

n−1∏
i=0

ϕ̃′(ϕ̃i(x)) =

n−1∏
i=0

(
1− d+ d

f(ϕ̃i(x))f ′′(ϕ̃i(x))

f ′(ϕ̃i(x))2

)
.

�

2.3. Replace d with r: Modified Newton-Raphson Iteration. We have considered maps of
the form

ϕ̃F (x) = x− d
f(x)

f ′(x)

where d = deg(F (X,Y )). However, we could also consider affine maps of the form

(2) ϕ̃(x) = x− r
f(x)

f ′(x)

for some r ̸= 0 and polynomial f(x). When used for iterated root finding, such maps are often
called the modified Newton-Raphson method. The fixed points are again the zeros of f(x) and are

7



all distinct with multipliers 1− r. Thus, if deg f ̸= r, then the point at infinity must also be a fixed
point by (1) with multiplier

d+1∑
i=1

1

1− λi
=

deg f(x)

r
+

1

1− λ∞
= 1

λ∞ =
deg f(x)

deg f(x)− r
.

These maps also form a family in the moduli space of dynamical systems and are determined by
their fixed points..

Theorem 14. Let r be a non-zero integer. Every rational map ϕ : P1 → P1 of degree d− 1 which
has d − 1 affine fixed points all with multiplier (1 − r) and fixes (1, 0) with multiplier d−1

d−r−1 is a

map of the form (2).

Proof. The method of proof is identical to the proof of Theorem 7, so is omitted. �

Remark. Note that if we choose r = 1, then all of the affine fixed points are also critical points
(ϕ̃′(x) = 0) as noted in [1, Corollary 1].

2.4. Connection to Maps with Automorphisms. Let Γ ⊂ PGL2 be a finite group.

Definition 15. We say that a homogeneous polynomial F is an invariant of Γ if F ◦ γ = χ(γ)F
for all γ ∈ Γ and some character χ of Γ. The invariant ring of Γ denoted K[X,Y ]Γ is the set of all
invariants.

The following was known as early as [2, footnote p.345].

Theorem 16. If F (X,Y ) is a homogeneous invariant of a finite group Γ ⊂ PGL2, then Γ ⊂
Aut(ϕF ).

Proof. Easy application of the chain rule. �

3. Connection to Lattès Maps

Consider an elliptic curve with Weierstrass equation E : y2 = g(x) for g(x) = x3 + ax2 + bx+ c.
The solutions g(x) = 0 are the 2-torsion points. If we integrate g(x) we get G(x) = x4/4+ a/3x3+
b/2x2 + cx + C for some constant C. If we let C = −(b2 − 4ac)/12, then the solutions G(x) = 0
are the 3-torsion points. In general, there are polynomials ΨE,m(x) called the division polynomials
for E for which the solutions of ΨE,m(x) are the m-torsion points. See [3, Chapter 2] for more
information on division polynomials.

A Lattès map is a rational function on the first coordinate of the multiplication map [m] ∈
End(E) on the rational points of an elliptic curve E; ϕE,m(x(P )) = x([m]). For integers m ≥ 3 we
have

[m](x, y) =

(
x−

ΨE,m−1ΨE,m+1

Ψ2
E,m

,
ΨE,m+2Ψ

2
E,m−1 −ΨE,m−2Ψ

2
E,m+1

4yΨ3
E,m

)
.

In other words, the induced Lattès map is given by

ϕE,m(x) = x−
ΨE,m−1ΨE,m+1

ψ2
m

.

Hence the fixed points of the Lattès maps are the x-coordinates of the m − 1 and m + 1 torsion
points. For m = 2, the fixed points are the 3 torsion points.
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Example 17. Given an elliptic curve of the form y2 = g(x) = x3 + ax2 + bx + c. The 2-torsion
points satisfy y2 = 0, so are fixed points of the map derived from homogenizing g(x).

F (X,Y ) = X3 + aX2Y + bXY 2 +XY 3

ϕF (X,Y ) = (aX2 + 2bXY + 3XY 2,−(2aX + bY 2))

The fixed points of the doubling map are the points where x([2]P ) = x(P ), in other words, the
points of order 3. They are the points which satisfy the equation

ΨE,3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ (4ac− b2) = 2g(x)g′′(x)− (g′(x))2

So we have

F (X,Y ) = 3X4 + 4aX3Y + 6bX2Y 2 + 12cXY 3 + (4ac− b2)Y 4

ϕF (X,Y ) = (4aX3 + 12bX2Y + 36cXY 2 + 4(4ac− b2)Y 3,

− (12X3 + 12aX2Y + 12bXY 2 + 12cY 3)).

For m = 2 we get the following stronger connecting generalized ϕF and Lattès maps.

Theorem 18. Maps of the form

ϕ̃(x) = x− 3
f(x)

f ′(x)

are the Lattès maps from multiplication by [2] and f(x) =
∏
(x−xi) where xi are the x-coordinates

of the 3-torsion points.

Proof. From [7, Proposition 6.52] we have the multiplies are all −2 except at ∞ where it is 4 and
the fixed points are the 3 torsion points (plus ∞). Now apply Theorem 14. �

3.1. Complex Multiplication and Automorphisms. For an elliptic curve E, every automor-
phism is of the form (x, y) 7→ (u2x, u3y) for some u ∈ C∗ [5, III.10]. In general, the only possibilities
are u = ±1 and Aut(E) ∼= Z/2Z. However, in the case of complex multiplication End(E) ) Z and
it is possible to contain additional roots of unity, thus having Aut(E) ) Z/2Z. The two cases are
j(E) = 0, 1728 having Aut(E) ∼= Z/6Z,Z/4Z respectively [5, III.10]. These additional automor-
phisms induce a linear action x 7→ u2x which fixes a polynomial whose roots are torsion points.
Thus, the corresponding map ϕF has a non-trivial automorphism of the form(

u2 0
0 1

)
∈ PGL2 .

Thus we have shown the following theorem.

Theorem 19. If E has Aut(E) ) Z/2Z and the zeros of F (X,Y ) are torsion points of E, then an
induced map ϕF has a non-trivial automorphism group.

Example 20. Let E = y2 = x3 + ax, for a ∈ Z, then j(E) = 1728 and End(E) contains the map
(x, y) 7→ (−x, iy). Thus, the automorphism group of every ϕF coming from torsion points satisfies

⟨
(
−1 0
0 1

)
⟩ ⊂ Aut(ϕF ).
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VERY AMPLE POLARIZED SELF MAPS EXTEND TO

PROJECTIVE SPACE

ANUPAM BHATNAGAR AND LUCIEN SZPIRO

Abstract. Let X be a projective variety defined over an infinite field,
equipped with a line bundle L, giving an embedding of X into Pm and
let φ : X → X be a morphism such that φ∗L ∼= L⊗q, q ≥ 2. Then there
exists an integer r > 0 extending φr to Pm.

1. Introduction

Let X be a projective variety defined over an infinite field k and φ a
finite self morphim of X. We say φ is polarized by a line bundle L on X if
φ∗L ∼= L⊗q for q > 1. We say that the polarization is very ample if the line
bundle L is very ample i.e. the morphism X → P(H0(X,L)) ∼= Pmk obtained
by evaluating the sections of L at points of X is a closed embedding ([4],
pp. 151). In this paper we show that there exists an integer r ≥ 1 such that
φr extends to a finite self map of Pmk , where X is embedded. We give an
example where r > 1 is required. Fakhruddin shows in ([3], Cor. 2.2) that φ
itself can be extended provided one chooses carefully a different embedding
of X in projective space. Our proof and Fakhruddin’s proof are closely
related. We explain the differences and similarities in the proofs among the
two papers in the third remark at the end of this article.

Acknowledgements: We thank Laura DeMarco and Tom Tucker for their
suggestions in the preparation of the paper.

2. Main result

Theorem 1. Let X be a projective variety defined over an infinite field k,
L a very ample line bundle on X and φ : X → X a polarized morphism.
Then there exists a positive integer r and a finite morphism ψ : Pmk → Pmk
extending φr, where m+ 1 = dimkH

0(X,L).

Proof : Let dim(X) = g and let s0, . . . , sm be a basis of H0(X,L). Let I
be the sheaf of ideals on Pm defining X. Then

(2) 0→ I → OPm → OX → 0

Date: June 15, 2011, Keywords and Phrases: Arithmetic Dynamical Systems on Al-
gebraic Varieties. 2010 Mathematics Subject Classification. 37P55,37P30,14G99. Both
authors are partially supported by NSF Grants DMS-0854746 and DMS-0739346.
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2 ANUPAM BHATNAGAR AND LUCIEN SZPIRO

is a short exact sequence of sheaves on Pm. Tensoring (2) with OPm(n) and
taking cohomology we get the long exact sequence

0→ H0(Pm, I(n))→ H0(Pm,OPm(n))→

→ H0(X,L⊗n)→ H1(Pm, I(n))→ . . .

By Serre’s vanishing theorem there exists n0 depending on I such that
H1(Pm, I(n)) = 0 for each n ≥ n0. Let {fi} be the set of homogeneous poly-
nomials defining X. Choose an integer r such that qr > maxi{deg(fi), n0}.
Since (φr)∗L ∼= L⊗qr , (φr)∗(si) can be lifted to a homogeneous polynomial hi
of degree qr in the si’s defined up to an element of H0(Pm, I(qr)). The poly-
nomials hi, 0 ≤ i ≤ m define a rational map ψ : Pm 99K Pm. We show using
induction that if the hi’s are chosen appropriately, then ψ is a morphism.

Let Wi be the hypersurface defined by hi. We can choose s0, . . . , sg with
no common zeros on X, then each component (say Z) of ∩gi=0Wi has codi-
mension at most g + 1 since it is defined by g + 1 equations. By ([4],
Thm 7.2, pp. 48), it follows that codim(Z) ≥ g + 1. Suppose we have

h0, . . . , hj , 0 ≤ j ≤ m such that each component of ∩ji=0Wi has codimen-
sion j + 1 and we want to choose hj+1. Let α1 be the lifting of (φr)∗(sj+1)
to H0(Pm,OPm(qr)). If V (α1) does not contain any of the components of

∩ji=0Wi, then set hj+1 = α1. Otherwise we invoke the Prime Avoidance
Lemma which states:

Lemma 3. Let A be a ring and let p1, . . . , pm, q be ideals of A. Suppose that
all but possibly two of the pi’s are prime ideals. If q * pi for each i, then q
is not contained in the set theoretical union ∪pi.

Proof : [5], pp. 2. �
Taking A = k[s0, . . . , sn], q = I(qr), and pi’s the ideals corresponding to

the distinct components of ∩ji=0Wi we can choose α2 ∈ H0(Pm, I(qr)) such

that V (α2) does not contain any of the components of ∩ji=0Wi. Consider
the family of hypersurfaces V (aα1 + bα2) with [a : b] ∈ P1

k. If a = 0, then

the corresponding hypersurface does not contain any components of ∩ji=0Wi.
Otherwise, since k is infinite there exists c ∈ k such that V (α1 + cα2) does

not contain any component of ∩ji=0Wi. Let hj+1 = α1 +cα2. This concludes
the induction and the proof of the theorem. �

We give an example of a self map of a rational quintic in P3 that does not
extend to P3. This illustrates that the condition r > 1 in Theorem 1 is at
times necessary.

Proposition 4. Let u, v be the coordinates of C ∼= P1 embedded in P3 with
coordinates (x0 = u5, x1 = u4v, x2 = uv4, x3 = v5). Then a self map φ of
C of degree 2 defined by two homogeneous polynomials P (u, v) and Q(u, v)
does not extend to P3 if P (u, v) = au2 + buv + cv2 with abc 6= 0.

Proof : Considering the restriction map H0(P3,OP3(2))→ H0(P1,OP1(10)).
The image of x20, x

2
1, x

2
2, x

2
3, x0x1, x0x2, x0x3, x1x2, x1x3, x2x3 under this map
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is u10, u8v2, u2v8, v10, u9v, u6v4, u5v5, u4v6, uv9. Thus u7v3 and u3v7 are lin-
early independent. (Note that it is easy to find two quadratic equations for
C). One has the possible commutative diagram:

P1
φ //

i
��

P1

i
��

P3
ψ //___ P3

The composition (i◦φ) is given by four homogeneous polynomials of degree
10, namely (P (u, v)5, P (u, v)4Q(u, v), P (u, v)Q(u, v)4, Q(u, v)5). If φ ex-
tended to a self map ψ of P3, some degree two homogeneous polynomial Fi in
the xi’s will restrict to (P (u, v)5, P (u, v)4Q(u, v), P (u, v)Q(u, v)4, Q(u, v)5)
on C, by substituting the expressions of the xi in (u, v). Since abc 6= 0 the
coefficients of u7v3 and u3v7 in P (u, v)5 are non-zero. So P (u, v)5 is not in
the image of H0(P3,OP3(2))→ H0(P1,OP1(10)).

3. Remarks

(1) If k is finite, φr extends to ψ if we allow ψ to be defined over a finite
extension of k. Indeed, applying the theorem to k̄(the algebraic
closure of k), ψ is defined by m + 1 polynomials in m + 1 variables
with coefficients in k̄. Hence ψ is defined over the finite extension of
k containing the finite set of coefficients of these polynomials.

(2) We say P ∈ X is preperiodic for φ if φm(P ) = φn(P ) for m >
n ≥ 1. Denote the set of preperiodic points of the dynamical sys-
tem (X,L, φ) by Prep(φ). It can be easily verified that Prep(φ) =
Prep(φr). Thus from an algebraic dynamics perspective, we do not
lose any information by replacing φ by φr. The same holds true for
points of canonical height [1] zero as well.

(3) One of the technical conditions required to extend φ from a self map
of X to a self map of Pmk is that φ∗L ∼= Ls where s is larger than the
degrees of equations defining X. We choose to replace φ by φr and
fix L. The integer q being at least 2 gives the result immediately.
On the other hand in ([3], Prop 2.1) Fakhruddin chooses to replace
L by L⊗n and keeps φ fixed. To finish the proof he uses a result
of Castelnuevo-Mumford ([6], Theorem 1 and 3), stating that if n is
large enough, X will be defined by equations of degree at most two
in P(H0(X,L⊗n)).
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